安徽省黄山市金川中学高二数学文月考试题含解析_第1页
安徽省黄山市金川中学高二数学文月考试题含解析_第2页
安徽省黄山市金川中学高二数学文月考试题含解析_第3页
安徽省黄山市金川中学高二数学文月考试题含解析_第4页
安徽省黄山市金川中学高二数学文月考试题含解析_第5页
已阅读5页,还剩5页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省黄山市金川中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.从一堆苹果中任取10只,称得它们的质量如下(单位:克)12512012210513011411695120134,则样本数据落在[114.5,124.5)内的频率为()A.0.2 B.0.3 C.0.4 D.0.5参考答案:C【考点】B7:频率分布表.【分析】从所给的十个数字中找出落在所要求的范围中的数字,共有4个,利用这个频数除以样本容量,得到要求的频率.【解答】解:∵在12512012210513011411695120134十个数字中,样本数据落在[114.5,124.5)内的有116,120,120,122共有四个,∴样本数据落在[114.5,124.5)内的频率为=0.4,故选C【点评】本题考查频率分布表,频数、频率和样本容量三者之间的关系是知二求一,这种问题会出现在选择和填空中,有的省份也会以大题的形式出现,把它融于统计问题中.2.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A. B. C. D.参考答案:C【考点】几何概型;一元二次不等式的解法.【专题】计算题.【分析】先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是0.3【解答】解:∵f(x)≤0?x2﹣x﹣2≤0?﹣1≤x≤2,∴f(x0)≤0?﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键3.长方体的一个顶点上三条棱长是3、4、5,且它的八个顶点都在同一球面上,这个球的体积是

)A.

B.

C.

D.参考答案:D4.已知直线交于P,Q两点,若点F为该椭圆的左焦点,则

取最小值时的值为(

) A.—

B.—

C.

D.

参考答案:B5.用反证法证明某命题时,对结论:“自然数中恰有一个偶数”正确的反设为(

)A.都是奇数

B.都是偶数C.中至少有两个偶数 D.中至少有两个偶数或都是奇数参考答案:D略6.已知椭圆和双曲线有相同的焦点是它们的一个交点,则的形状是

)A.锐角三角形

B.直角三角形

C.钝角三角形

D.随的变化而变化参考答案:B略7.一个正方体的顶点都在球面上,它的棱长为,则球的半径是()cm.A.1

B.

C.

D.2参考答案:C8.在中,,,,则解的情况(

)A.无解

B.有一解

C.有两解

D.不能确定参考答案:A9.甲、乙、丙三位同学用计算机联网学习数学,甲及格率为,乙及格率为,丙及格率为,三人各答一次,则三人中只有一人及格的概率为(

)A、

B、

C、

D、参考答案:D10.

已知集合,,则集合(

)A.

B.

C.

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.用等值算法求294和84的最大公约数时,需要做

次减法.参考答案:412.某几何体的三视图如图所示,其正视图是边长为2的正方形,侧视图和俯视图都是等腰直角三角形,则此几何体的体积是

.参考答案:略13.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.参考答案:100【考点】解三角形的实际应用.【分析】设此山高h(m),在△BCD中,利用仰角的正切表示出BC,进而在△ABC中利用正弦定理求得h.【解答】解:设此山高h(m),则BC=h,在△ABC中,∠BAC=30°,∠CBA=105°,∠BCA=45°,AB=600.根据正弦定理得=,解得h=100(m)故答案为:100.【点评】本题主要考查了解三角形的实际应用.关键是构造三角形,将各个已知条件向这个主三角形集中,再通过正弦、余弦定理或其他基本性质建立条件之间的联系,列方程或列式求解.14.三棱锥V-ABC中,AB=AC=10,BC=12,各侧面与底面所成的二面角都是45°,则棱锥的侧面积是_______,高是

.参考答案:.解析:据面积射影定理,,.∵,∴.又∵,且

.

15.如图,F1、F2分别是椭圆的左、右焦点,A和B是以O(O为坐标原点)为圆心,以|OF1|为半径的圆与该椭圆的两个交点,且△F2AB是等边三角形,则椭圆的离心率为

参考答案:16.将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为__________.参考答案:a3;17.若为圆的弦的中点,则直线的方程是

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.椭圆一个焦点为,离心率.(Ⅰ)求椭圆的方程式.(Ⅱ)定点,为椭圆上的动点,求的最大值;并求出取最大值时点的坐标求.(Ⅲ)定直线,为椭圆上的动点,证明点到的距离与到定直线的距离的比值为常数,并求出此常数值.参考答案:见解析解:(Ⅰ)根据题意得,,∴,,,故椭圆的方程为.(Ⅱ)设点坐标为,则,,∵,∴当时,取得最大值.∴最大值为,此时点坐标为.(Ⅲ)设点,则,点到的距离为:,,到直线的距离为,∵,故到的距离与到定直线的距离之比为常数.19.(本小题满分13分)从含有两件正品a,b和一件次品c的3件产品中每次任取一件,连续取两次,(1)每次取出不放回;求取出的两件产品中恰有一件是次品的概率.(2)每次取出后放回;求取出的两件产品中恰有一件是次品的概率.参考答案:(1)每次取出不放回的所有结果有(a,b),(a,c),(b,a),(b,c),(c,a),(c,b),其中左边的字母表示第一次取出的产品,右边的字母表示第二次取出的产品,共有6个基本事件,其中恰有一件次品的事件有4个,所以每次取出不放回,取出的两件产品中恰有一件是次品的概率为.(2)每次取出后放回的所有结果:(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)共有9个基本事件,其中恰有一件次品的事件有4个,所以每次取出后放回,取出的两件产品中恰有一件是次品的概率为.20.(本小题满分12分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线与AB相交于点D,与椭圆相交于E,F两点.(1)若,求的值;(2)求四边形AEBF面积的最大值.参考答案:(1)或;(2)21.如图,在梯形ABCD中,,PA⊥平面ABCD,.(1)证明:CD⊥平面PAC;(2)若E为AD的中点,求证:CE∥平面PAB.参考答案:证明:(1)∵平面,平面,∴.又,∴平面.(2)∵,∴.∵平面,∴,∴.又为的中点,∴,∴四边形是正方形,∴.又平面,平面,∴平面.22.椭圆的左右焦点分别为F1,F2,且离心率为,点P为椭圆上一动点,△F1PF2面积的最大值为.(1)求椭圆的方程;(2)设椭圆的左顶点为A1,过右焦点F2的直线l与椭圆相交于A,B两点,连结A1A,A1B并延长分别交直线x=4于P,Q两点,问是否为定值?若是,求出此定值;若不是,请说明理由.参考答案:【考点】椭圆的简单性质.【分析】(1)由题意的离心率公式可得e==,设c=t,a=2t,即,其中t>0,点P为短轴端点,三角形面积取得最大,求得t=1,进而得到椭圆方程;(2)设直线AB的方程为x=ty+1,A(x1,y1),B(x2,y2),代入椭圆方程,运用韦达定理,求得AA1,BA1的方程,令x=4,可得P,Q的坐标,运用向量的数量积的坐标表示,计算即可得到定值0.【解答】解:(1)已知椭圆的离心率为,不妨设c=t,a=2t,即,其中t>0,又△F1PF2面积取最大值时,即点P为短轴端点,因此,解得t=1,则椭圆的方程为;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论