2022-2023学年河北省保定市圆方中学高二数学文联考试卷含解析_第1页
2022-2023学年河北省保定市圆方中学高二数学文联考试卷含解析_第2页
2022-2023学年河北省保定市圆方中学高二数学文联考试卷含解析_第3页
2022-2023学年河北省保定市圆方中学高二数学文联考试卷含解析_第4页
2022-2023学年河北省保定市圆方中学高二数学文联考试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年河北省保定市圆方中学高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在三角形ABC中,角A,B,C所对应的长分别为a,b,c,若a=2,B=,c=2,则b=

.

参考答案:略2.双曲线C:﹣=1的左右焦点分别为F1,F2,若双曲线上一点P满足|PF2|=7,则△F1PF2的周长等于()A.16 B.18 C.30 D.18或30参考答案:C【考点】双曲线的简单性质.【分析】求出双曲线的a=3,c=5,运用双曲线的定义,可得||PF1|﹣|PF2||=2a,解方程得|PF1|=13,即可得到△F1PF2的周长.【解答】解:双曲线C:﹣=1的a=3,c=5由双曲线的定义可得:||PF1|﹣|PF2||=2a=6,即有||PF1|﹣7|=6,解得|PF1|=13(1舍去).∴△F1PF2的周长等于7+13+10=30.故选:C.【点评】本题考查双曲线的定义和方程,注意定义法的运用,考查运算能力,属于基础题.3.若直线不平行于平面,则下列结论成立的是(

)A.内的所有直线都与直线异面

B.内不存在与平行的直线C.内的直线都与相交

D.内必存在直线与垂直参考答案:D略4.下列判断正确的是

(

)

A.若,则a//b

B.,则a⊥bC.若,则

D.若,则参考答案:B5.已知服从正态分布的随机变量,在区间,和内取值的概率分别为,和.某大型国有企业为名员工定制工作服,设员工的身高(单位:)服从正态分布,则适合身高在范围内员工穿的服装大约要定制(

)A.套

B.套

C.套

D.套参考答案:B略6.过点,且在两坐标轴上的截距相等的直线方程是:A.

B.C.或

D.或参考答案:C7.如图,在平行六面体中,已知=a,=b,=c,则用向量a,b,c可表示向量等于(

)A.a+b+c

B.a-b+cC.a+b-c

D.-a+b+c参考答案:D略8.设函数在内有定义.对于给定的正数,定义函数取函数,若对任意的,恒有,则(

)A.的最大值为2

B.的最小值为2C.的最大值为1

D.的最小值为1参考答案:D9.已知函数则=

..

参考答案:B略10.3名男生和4名女生排在一起做操,要求男生不相邻,则不同的排法有(

)A.

B.

C.

D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.如图,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥DQ,则a的值等于。参考答案:212.x,y∈R且x2–y2=2,则当有序数对(x,y)为

时,|2x+3y|取得最小值

。参考答案:(2,–)或(–2,),2;13.点P(1,1,1)其关于XOZ平面的对称点为P′,则︳PP′︳=

参考答案:214.如图正方体ABCD-A1B1C1D1中,与AD1异面且与AD1所成的角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.参考答案:1条与异面的面对角线分别为:、、、、,其中只有和所成的角为,故答案为1条.

15.在区间上随机取一个数,使成立的概率为

.参考答案:16.有如下四个推断:①由=2n-1,求出S1=12,S2=22,S3=32,…,推断:数列{}的前n项和为;②由f(x)=xcosx满足f(-x)=-f(x)对R都成立,推断:f(x)=xcosx为奇函数;③由圆x2+y2=r2的面积S=r2,推断:椭圆的面积为S=ab;④由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切,其中推理中属于归纳推理且结论正确的是____(将符合条件的序号都填上)。参考答案:①17.已知抛物线的准线与双曲线交于、两点,点为抛物线的焦点,若△为直角三角形,则该双曲线的离心率是________________。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.

(1)问各班被抽取的学生人数各为多少人?

(2)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.参考答案:解:(1)由频率分布条形图知,抽取的学生总数为人.

∵各班被抽取的学生人数成等差数列,设其公差为,由=100,解得.∴各班被抽取的学生人数分别是22人,24人,26人,28人.

(2)在抽取的学生中,任取一名学生,则分数不小于90分的概率为0.35+0.25+0.1+0.05=0.75.略19.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.参考答案:【考点】程序框图;古典概型及其概率计算公式;几何概型.【分析】(1)根据分层抽样可得,故可求n的值;(2)求出高二代表队6人,从中抽取2人上台抽奖的基本事件,确定a和b至少有一人上台抽奖的基本事件,根据古典概型的概率公式,可得a和b至少有一人上台抽奖的概率;(3)确定满足0≤x≤1,0≤y≤1点的区域,由条件得到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.【解答】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.20.(本小题满分12分)某校从参加高一年级期末考试的学生中抽出名学生,将其成绩(均为整数)分成六段,…后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(分及以上为及格)和平均分;(3)从成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率.参考答案:(1)因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015*2+0.01+0.005)*10=0.03分直方图如右所示…………….4分(2)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75%

……

6分利用组中值估算抽样学生的平均分45·f1+55·f2+65·f3+75·f4+85·f5+95·f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估计这次考试的平均分是71分………8分(3)[70,80),[80,90),[90,100]的人数是18,15,3。所以从成绩是70分以上(包括70分)的学生中选两人,他们在同一分数段的概率。……12分21.已知.(1)求函数的极值;(2)设,对于任意,,总有成立,求实数a的取值范围.参考答案:(1)的极小值为:,极大值为:(2)试题分析:(1)先求函数的定义域,然后对函数求导,利用导数求得函数的单调区间,进而求得极值.(2)由(1)得到函数的最大值为,则只需.求出函数的导数,对分成两类,讨论函数的单调区间和最小值,由此求得的取值范围.试题解析:(1)所以的极小值为:,极大值为:;(2)由(1)可知当时,函数的最大值为对于任意,总有成立,等价于恒成立,①时,因为,所以,即在上单调递增,恒成立,符合题意.

②当时,设,,所以在上单调递增,且,则存在,使得所以在上单调递减,在上单调递增,又,所以不恒成立,不合题意.综合①②可知,所求实数的取值范围是.【点睛】本小题主要考查函数导数与极值,考查利用导数求解恒成立问题.求极值的步骤:

①先求的根(定义域内的或者定义域端点的根舍去);②分析两侧导数的符号:若左侧导数负右侧导数正,则为极小值点;若左侧导数正右侧导数负,则为极大值点.求函数的单调区间、极值、最值是统一的,极值是函数的拐点,也是单调区间的划分点,而求函数的最值是在求极值的基础上,通过判断函数的大致图像,从而得到最值,大前提是要考虑函数的定义域.22.(本题12分,(1)小问6分,(2)小问6分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC,PA⊥平面ABCD,CD⊥PC,(1)证明:CD⊥平面PAC;(2)若E为AD的中点,求证:CE∥平面PAB.参考答案:(1)∵PA⊥平面ABCD,CD?平面ABCD,∴PA⊥CD.…………2又CD⊥PC,PA∩PC=P,……

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论