新版高一数学必修第一册第一章全部课件_第1页
新版高一数学必修第一册第一章全部课件_第2页
新版高一数学必修第一册第一章全部课件_第3页
新版高一数学必修第一册第一章全部课件_第4页
新版高一数学必修第一册第一章全部课件_第5页
已阅读5页,还剩253页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新版高一数学必修第一册

第一章全部课件人教A版必修第一册第一章集合与常用逻辑用语1.1集合的概念课程目标

1.了解集合的含义;理解元素与集合的“属于”与“不属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.会用集合的两种表示方法表示一些简单集合。感受集合语言的意义和作用。数学学科素养1.数学抽象:集合概念的理解,描述法表示集合的方法;2.逻辑推理:集合的互异性的辨析与应用;3.数学运算:集合相等时的参数计算,集合的描述法转化为列举法时的运算;4.数据分析:元素在集合中对应的参数满足的条件;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。自主预习,回答问题阅读课本2-3页,思考并完成以下问题1.集合和元素的含义是什么?各用什么字母表示?2.集合有什么特性?3.元素和集合之间有哪两种关系?有什么符号表示?4.常见的数集有哪些?用什么字母表示?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。题型分析举一反三题型一集合的含义解题方法(判断一组对象能否组成集合的标准)判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.题型二元素与集合的关系[答案]

(1)

C

(2)0,1,2解题方法(判断元素与集合关系的两种方法)题型三集合中元素的特性及应用解题方法(根据集合中元素的特性求解字母取值(范围)的3个步骤)自主预习,回答问题阅读课本3-5页,思考并完成以下问题1.集合有哪两种表示方法?它们如何定义?2.它们各自有什么特点?3.它们使用什么符号表示?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。题型分析举一反三题型一用列举法表示集合解题方法(用列举法表示集合的三个步骤)1.求出集合的元素;2.把元素一一列举出来,且相同元素只能列举一次;3.用花括号括起来。解题方法(描述法表示集合的2个步骤)解题方法(集合表示法中元素与集合的关系)1.若已知集合是用描述法表示的,理解集合的代表元素和集合属性是关键;2.若已知集合是用列举法表示的,把握元素的共同特征是关键;解题方法(认识集合含义的2个步骤)人教A版必修第一册1.2集合间的基本关系复习引入1.集合、元素的概念2.元素与集合的关系:3.集合中元素的三大特性:

4.集合的表示方法:5.常用数集:

属于,不属于

确定性、互异性,无序性

列举法、描述法用列举法表示:思考1:实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?

观察以下几组集合,并指出它们元素间的关系:①A={1,2,3},B={1,2,3,4,5};②A为立德中学高一(2)班全体女生组成的集合,B为这个班全体学生组成的集合;③A={x|x>2},B={x|x>1};探究一

子集

一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.记作:读作:“A含于B”(或“B包含A”)符号语言:则子集定义:韦恩图Venn图:用一条封闭曲线(圆、椭圆、长方形等)的内部来代表集合叫集合的韦恩图表示.BABA图中A是否为B的子集?(1)BA(2)BA不是不是

判断集合A是否为集合B的子集,若是则在()打√,若不是则在()打×:①A={1,3,5},B={1,2,3,4,5,6}()②A={1,3,5},B={1,3,6,9}()③A={0},B={x|x2+2=0}()④A={a,b,c,d},B={d,b,c,a}()√√××牛刀小试思考2:与实数中的结论“若a≥b,且b≥a,则a=b

”相类比,在集合中,你能得出什么结论?(1)中集合A中的元素和集合B中的元素相同.观察下列两个集合,并指出它们元素间的关系(1)A={x|x是两条边相等的三角形},B={x|x是等腰三角形}.探究二

集合相等集合与集合之间的“相等”关系定义:如果集合A的任何一个元素都是集合B的元素,同时集合B任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。一个集合有多种表达形式.A=B观察以下几组集合,并指出它们元素间的关系:(1)A={1,3,5},B={1,2,3,4,5,6}(2)A={四边形},B={多边形}探究三

真子集定义:

如果集合A⊆B,但存在元素x∈B,且xA并且A≠B,称集合A是集合B的真子集.读作:“A真含于B(或“B真包含A”).BA探究四空集我们把不含任何元素的集合叫做空集,记为,并规定:空集是任何集合的子集。例如:方程x2+1=0没有实数根,所以方程x2+1=0的实数根组成的集合为你还能举几个空集的例子吗?深化概念1.包含关系与属于关系有什么区别?2.集合

A

B

与集合有什么区别?前者为集合之间关系,后者为元素与集合之间的关系.3.0,{0}与

Φ三者之间有什么关系?{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。如Φ{0}不能写成Φ={0},Φ∈{0}由上述集合之间的基本关系,可以得到下列结论:任何一个集合是它本身的子集,即对于集合A、B、C,如果,且,那么.CBA结论例1写出集合{a,b}的所有子集,并指出哪些是它的真子集.解:集合{a,b}的所有子集为:,{a},{b},{a,b}.真子集为:,{a},{b}.写集合子集的一般方法:先写空集,然后按照集合元素从少到多的顺序写出来,一直到集合本身.写集合真子集时除集合本身外其余的子集都是它的真子集.一般地,集合A含有n个元素,则A的子集共有2n个,A的真子集共有2n-1个.写出集合的所有子集,并指出它的真子集.解:集合的所有子集为

.所有真子集为例2.判断下列各题中集合A是否为集合B的子集,并说明理由。解:(1)因为3不是8的约数,所以集合A不是集合B的子集。达标检测回顾本节课你有什么收获?1.子集:AB任意x∈Ax∈B.2.真子集:AB,但存在∈B且A.3.集合相等:A=BAB且BA.4.性质:①A,若A非空,则A.②AA.③AB,BCAC.人教A版必修第一册第一章集合与常用逻辑用语1.2集合间的基本关系自主预习,回答问题阅读课本7-8页,思考并完成以下问题1.集合与集合之间有什么关系?怎样表示集合间的这些关系?2.集合的子集指什么?真子集又是什么?如何用符号表示?3.空集是什么样的集合?空集和其他集合间具有什么关系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。⫋⫋⫋⫋⫋⫋子集2.用适当的符号填空

答案:-1题型分析举一反三题型一写出给定集合的子集例1

(1)写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集;(2)填写下表,并回答问题:

由此猜想:含n个元素的集合{a1,a2,…,an}的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?分析:(1)利用子集的概念,按照集合中不含任何元素、含有一个元素、含有两个元素、含有三个元素这四种情况分别写出子集.(2)由特殊到一般,归纳得出.解:(1)不含任何元素的子集为⌀;含有一个元素的子集为{0},{1},{2};含有两个元素的子集为{0,1},{0,2},{1,2};含有三个元素的子集为{0,1,2}.故集合{0,1,2}的所有子集为⌀,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.其中除去集合{0,1,2},剩下的都是{0,1,2}的真子集.(2)由此猜想:含n个元素的集合{a1,a2,…,an}的所有子集的个数是2n,真子集的个数是2n-1,非空真子集的个数是2n-2.解题方法(分类讨论是写出所有子集的方法)1.分类讨论是写出所有子集的有效方法,一般按集合中元素个数的多少来划分,遵循由少到多的原则,做到不重不漏.2.若集合A中有n个元素,则集合A有2n个子集,有(2n-1)个真子集,有(2n-1)个非空子集,有(2n-2)个非空真子集,该结论可在选择题或填空题中直接使用.解析:集合{1,2,3}是集合A的真子集,同时集合A又是集合{1,2,3,4,5}的子集,所以集合A只能取集合{1,2,3,4},{1,2,3,5}和{1,2,3,4,5}.答案:B题型二韦恩图及其应用例2下列能正确表示集合M={-1,0,1}和N={x|x2+x=0}的关系的维恩图是(

)解析:∵N={x|x2+x=0}={x|x=0或x=-1}={0,-1},∴N⫋M,故选B.答案:B

[跟踪训练二]2.设A={四边形},B={梯形},C={平行四边形},D={菱形},E={正方形},则下列关系正确的是(

)A.E⫋D⫋C⫋A B.D⫋E⫋C⫋AC.D⫋B⫋A D.E⫋D⫋C⫋B⫋A题型三由集合间的关系求参数的范围例3

已知集合A={x|-5<x<2},B={x|2a-3<x<a-2}.(1)若a=-1,试判断集合A,B之间是否存在子集关系;(2)若A⊇B,求实数a的取值范围.分析:(1)令a=-1,写出集合B,分析两个集合中元素之间的关系,判断其子集关系;(2)根据集合B是否为空集进行分类讨论;然后把两集合在数轴上标出,根据子集关系确定端点值之间的大小关系,进而列出参数a所满足的条件.解:(1)若a=-1,则B={x|-5<x<-3}.如图在数轴上标出集合A,B.由图可知,B⫋A.(2)由已知A⊇B.①当B=⌀时,2a-3≥a-2,解得a≥1.显然成立.②当B≠⌀时,2a-3<a-2,解得a<1.由已知A⊇B,如图在数轴上表示出两个集合,又因为a<1,所以实数a的取值范围为-1≤a<1.

解题方法(根据集合之间关系,求参数的值或范围)1.求解此类问题通常是借助于数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,同时还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.2.涉及“A⊆B”或“A⫋B,且B≠⌀”的问题,一定要分A=⌀和A≠⌀两种情况进行讨论,其中A=⌀的情况容易被忽略,应引起足够的重视.

3.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a的取值范围.解:A={-3,2}.对于x2+x+a=0,人教A版必修第一册1.3集合的基本运算已知一个班有30人,其中5人有兄弟,5人有姐妹,你能判断这个班有多少是独生子女吗?如果不能判断,你能说出需哪些条件才能对这一问题做出判断吗?事实上,如果注意到“有兄弟的人也可能有姐妹”,我们就知道,上面给出的条件不足以判断这个班独生子女的人数,为了解决这个问题,我们还必须知道“有兄弟且有姐妹的同学的人数”.应用本小节集合运算的知识,我们就能清晰地描述并解决上述问题了.

两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?问题1:思考:

考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5,7},B={2,4,6,7},

C={1,2,3,4,5,6,7}.(2)A={x|x是有理数},B={x|x是无理数},

C={x|x是实数}.

集合C是由所有属于集合A或属于B的所有元素组成的.

一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Unionset).记作:A∪B(读作:“A并B”)即:A∪B={x|x∈A

,或x∈B}Venn图表示:

A∪BAB

说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素).1.并集概念A∪BABA∪BAB“或”的理解:三层含义思考:下列关系式成立吗?(1)(2)A∪BAB若AB,则A∪B=B

.若AB,则A∪B与B有什么关系?

例1.设A={4,5,6,8},B={3,5,7,8},求AUB.解:例2.设集合A={x|-1<x<2},B={x|1<x<3},求AUB.解:可以在数轴上表示例2中的并集,如下图:典型例题由不等式给出的集合,研究包含关系或进行运算,常用数轴。思考:

考察下面的问题,集合C与集合A、B之间有什么关系吗?(1)A={2,4,6,8,10},B={3,5,8,12},C={8}.(2)A={x|x是立德中学今年在校的女同学},

B={x|x是立德中学今年在校的高一年级同学},

C={x|x是立德中学今年在校的高一年级女同学}.

集合C是由那些既属于集合A且又属于集合B的所有元素组成的.

一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集(intersectionset).记作:A∩B(读作:“A交B”)即:A∩B={x|x∈A

且x∈B}Venn图表示:

说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合.2.交集概念ABA∩BA∩BABA∩BB例3

立德中学开运动会,设

A={x|x是立德中学高一年级参加百米赛跑的同学},

B={x|x是立德中学高一年级参加跳高比赛的同学},

解:就是立德中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,={x|x是立德中学高一年级既参加百米赛跑又参加跳高比赛的同学}.例题例4.设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示、的位置关系.

解:平面内直线、可能有三种位置关系,即相交于一点,平行或重合.(1)直线、相交于一点P可表示为={点P}(2)直线、平行可表示为(3)直线、重合可表示为思考:下列关系式成立吗?(1)(2)A∩BAB若,则A∩B与A有什么关系?

若AB,则A∩B

=A

.A

B

问题:实例引入

在下面的范围内求方程的解集:(1)有理数范围;(2)实数范围.

并回答不同的范围对问题结果有什么影响?

解:(1)在有理数范围内只有一个解2,即:(2)在实数范围内有三个解2,,,即:

一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合全集.通常记作U.

全集概念注意:全集是相对于所研究问题而言的一个相对概念,它含有与所研究问题有关的各个集合的全部元素.因此全集因问题而异.

对于一个集合A

,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集.Venn图表示:

说明:补集的概念必须要有全集的限制.补集概念记作:A

即:A={x|x∈U

且x

A}AUA例5.设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求A,B.解:根据题意可知:

U={1,2,3,4,5,6,7,8},所以:A={4,5,6,7,8},

B={1,2,7,8}.说明:可以结合Venn图来解决此问题.例6.设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形}.求A∩B,(A∪B)

解:根据三角形的分类可知A∩B=,A∪B={x|x是锐角三角形或钝角三角形},(A∪B)={x|x是直角三角形}.例7已知全集U=R,集合, ,求.解:性质(1)(2)UΦ达标检测126回顾本节课你有什么收获?⑴并集、交集、补集

A∪B={x|x∈A或x∈B},

A∩B={x|x∈A且x∈B};(2)利用数轴和Venn图求交集、并集、补集;(3)性质A∩A=A,A∪A=A,

A∩=,A∪=A;

A∩B=B∩A,A∪B=B∪A.课堂小结人教A版必修第一册人教A版必修第一册第一章集合与常用逻辑用语1.3集合的基本运算自主预习,回答问题阅读课本10-13页,思考并完成以下问题1.两个集合的并集与交集的含义是什么?它们具有哪些性质?2.怎样用Venn图表示集合的并集和交集?3.全集与补集的含义是什么?如何用Venn图表示给定集合的补集?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。1.判断(正确的打“√”,错误的打“×”)(1)集合A∪B中的元素个数就是集合A和集合B中所有元素的个数和.

)(2)当集合A与集合B没有公共元素时,集合A与集合B就没有交集.()(3)若A∪B=⌀,则A=B=⌀.()(4)若A∩B=⌀,则A=B=⌀.()(5)若A∪B=A∪C,则B=C.()(6)∁A⌀=A.(

)(7)∁U(A∪B)=(∁UA)∪(∁UB).()

2.设集合M={-1,0,1},N={0,1,2},则M∪N等于(

)A.{0,1}

B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}答案:D3.若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=(

)A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}答案:A4.全集U={x|0<x<10},A={x|0<x<5},则∁UA=________.答案:{x|5≤x<10}题型分析举一反三题型一集合的交集运算、并集运算及补集运算例1(单一运算)

1.求下列两个集合的并集和交集:(1)A={1,2,3,4,5},B={-1,0,1,2,3};(2)A={x|x+1>0},B={x|-2<x<2};2.设集合U={1,2,3,4,5,6},M={1,2,4},则∁UM=(

)A.U

B.{1,3,5}C.{3,5,6} D.{2,4,6}解:1.(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)由题意知A={x|x>-1},用数轴表示集合A和B,如图所示,则数轴上方所有“线”下面的实数组成了A∪B,故A∪B={x|x>-2},数轴上方“双线”(即公共部分)下面的实数组成了A∩B,故A∩B={x|-1<x<2}.2.因为U={1,2,3,4,5,6},M={1,2,4},由补集的定义,可知∁UM={3,5,6}.故选C解题方法(求两个集合的并集、交集及补集的常用方法)1.定义法:对于用列举法给出的集合,则依据并集、交集的含义,可直接观察或借助于Venn图写出结果.2.数形结合法:对于用描述法给出的集合,首先明确集合中的元素,其次将两个集合化为最简形式;对于连续的数集常借助于数轴写出结果,此时要注意数轴上方所有“线”下面的实数组成了并集,数轴上方“双线”(即公共部分)下面的实数组成了交集,此时要注意当端点不在集合中时,应用空心点表示.解.1.

由题意,知A={1,2,3},B={0,1,2},结合Venn图,可得A∩B={1,2}.

答案:D2.画出数轴如图所示,故A∪B={x|x>-2}.

答案:

A3.用数轴表示集合A为图中阴影部分,

∴∁UA={x|x≤2或x>5}.答案:(1){x|x≤2或x>5}

[跟踪训练三]1.已知集合A={x|0≤x≤4},集合B={x|m+1≤x≤1-m},且A∪B=A,求实数m的取值范围.解:∵A∪B=A,∴B⊆A.∵A={x|0≤x≤4}≠⌀,∴B=⌀或B≠⌀.当B=⌀时,有m+1>1-m,解得m>0.当B≠⌀时,用数轴表示集合A和B,如图所示,检验知m=-1,m=0符合题意.综上所得,实数m的取值范围是m>0或-1≤m≤0,即m≥-1.变式:[变条件]将本例中“A∪B=A”改为“A∩B=A”,其他条件不变,求实数m的取值范围.解:∵A∩B=A,∴A⊆B.如图,解得m≤-3.检验知m=-3符合题意.故实数m的取值范围是m≤-3.人教A版必修第一册1.4充分条件与必要条件如图所示电路中(整个电路及灯泡一切正常),记p:闭合开关A,q:灯泡亮。请把这个电路图改写为“若p,则q”形式的命题并判断真假。情境一:AC情境一:

“若p,

则q.”是真命题AC情境二:记p:x

>2,q:x>0

。判断命题“若x

>2,则x>0”的真假。

“若x>2则x>0”是真命题思考:下列“若P,则q”形式的命题中,哪些是真命题?哪些是假命题?(1)若平行四边形的对角线互相垂直,则这个平行四边形是菱形;(2)若两个三角形的周长相等,则这两个三角形全等;(3)若(4)若平面内两条直线均垂直于直线l,则a//b。真假假真定义:

1、充分条件与必要条件:一般地,用、分别表示两个命题,如果命题成立,可以推出命题也成立,即,那么叫做的充分条件,叫做的必要条件.

则称:是的充分条件,是的必要条件。P足以导致q,也就是说条件p充分了;q是p成立所必须具备的前提思考:下列“若P,则q”形式的命题中,p是q

什么条件?(1)若平行四边形的对角线互相垂直,则这个平行四边形是菱形;(2)若两个三角形的周长相等,则这两个三角形全等;(3)若(4)若平面内两条直线均垂直于直线l,则a//b。(1)、(4)中,p是q的充分条件,q是p的必要条件;(2)、(3)中,

p不是q的充分条件,q不是p的必要条件解:(1)这是一条平行四边形的判定定理,所以p是q的充分条件。

(2)这是一条相似三角形的判定定理,所以p是q的充分条件。

(3)这是一条菱形的性质定理,所以p是q的充分条件。解:(4)由于所以p不是q的充分条件。

(5)由等式的性质知,,所以p是q的充分条件。

(6)为无理数,但为有理数,,所以p不是q

的充分条件。思考:例1中命题(1)给出了“四边形是平行四边形”的一个充分条件,这样的充分条件唯一吗?若不唯一,那么你能给出不同的充分条件吗?四边形的两组对边分别相等,四边形的一组对边平行且相等,四边形的两条对角线互相平分都是其充分条件。思考:你能说出几个两条直线平行的充分条件?一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件。解:(1)这是一条平行四边形的性质定理,所以q是p的必要条件。

(2)这是一条相似三角形的性质定理,所以q是p的必要条件。

(3)如图,四边形ABCD的对角线互相垂直,但它不是菱形,,所以q不是p的必要条件。解:(4)显然所以q不是p的必要条件。

(5)由于,,,所以q不是p的必要条件。

(6)为无理数,但不全是无理数,,所以q不是p的必要条件。思考:例2中命题(1)给出了“四边形是平行四边形”的一个必要条件,这样的必要条件唯一吗?若不唯一,你能给出几个其它的必要条件吗?四边形的两组对边分别相等,四边形的一组对边平行且相等,四边形的两条对角线互相平分都是其必要条件。一般地,数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件。思考:下列“若P,则q”形式的命题中,哪些命题与它们的逆命题都是真命题?(1)若两个三角形的两角和其中一角所对的边分别相等,则这两个三角形全等;(2)若两个三角形全等,则这两个三角形的周长相等;(3)若一元二次方程有两个不相等的实数根,则(4)若是空集,则A与B均是空集。命题(1)、(4)与它们的逆命题都是真命题。定义一般地,如果既有pq

,又有qp

就记作

pq.此时,我们说,p是q的充分必要条件,简称充要条件.

显然,如果p是q的充要条件,那么q也是p的充要条件.(p等价于q)

即:如果pq,那么p与q互为充要条件.上思考中,命题(1)、(4)中,p与q互为充要条件.一般地,(1)若pq,但qp,则称p是q的(2)若pq,但qp,则称p是q的;(3)若pq,且qp,则称p是q的充分不必要条件;必要不充分条件既不充分也不必要条件.例3下列各题中,哪些p是q的充要条件?(1)p:四边形是正方形,q:四边形的对角线互相垂直且平分;(2)P:两个三角形相似,q:两个三角形三边成比例;(3)p:xy>0,q:x>0,y>0;(4)p:x=1是一元二次方程解:(1)因为对角线互相垂直平分的四边形不一定是正方形,所以,所以p不是q的充要条件。(2)因为“若p,则q”是相似三角形的性质定理,“若q,则p”是相似三角形的判定定理,所以它们均是真命题,即,所以P是q的充要条件。例3下列各题中,哪些p是q的充要条件?(1)p:四边形是正方形,q:四边形的对角线互相垂直且平分;(2)P:两个三角形相似,q:两个三角形三边成比例;(3)p:xy>0,q:x>0,y>0;(4)p:x=1是一元二次方程解:(3)因为xy>0时,x>0,y>0不一定成立,所以,所以p不是q的充要条件。(4)因为“若p,则q”与“若q,则p”均为真命题,即所以P是q的充要条件。探究:通过上面的学习,你能给出“四边形是平行四边形”的充要条件吗?四边形的两组对角分别相等、四边形的两组对边分别相等、四边形的一组对边平行且相等、四边形的对角线互相平分、四边形的两组对边分别平行都是它的充要条件。例4:已知:⊙O的半径为r,圆心O到直线l的距离为d.求证:d=r是直线l与⊙O相切的充要条件.分析:设p:d=r,q:

l与⊙O相切.证明:如图所示.(1)充分性(pq):作OP⊥l于点P,则OP=d,若d=r,则点P在⊙O上,在直线l上任取一点Q(异于点P),连接OQ.在Rt△OPQ中,OQ>OP=r.所以,除点P外直线l上的点都在⊙O

的外部,即直线l与⊙O仅有一个公共点P.所以直线l与⊙O相切.PQlO(2)必要性():若直线l与相切,不妨设切点为P,则,因此,d=OP=r.由(1)(2)可得,d=r是直线l与相切的充要条件。达标检测B2.请用“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”填空:

(1)x=y是x2=y2的_____________条件(2)ab=0是a=0的________________条件(3)x2>1是x<1的__________________条件(4)x=1或x=2是x2-3x+2=0的_____条件充分不必要必要不充分既不充分又不必要充要3.求证:关于x的方程ax2+bx+c=0有一根为1的充要条件是a+b+c=0。证明:(1)必要性,即“若x=1是方程ax2+bx+c=0的根,则a+b+c=0”.∵x=1是方程的根,将x=1代入方程,得a12+b1+c=0,即a+b+c=0.(2)充分性,即“若a+b+c=0,则x=1是方程ax2+bx+c=0的根”.把x=1代入方程的左边,得a12+b1+c=a+b+c.∵a+b+c=0,∴x=1是方程的根.综合(1)(2)知命题成立

课堂小结

(3)判别技巧:

①可先简化命题;②否定一个命题只要举出一个反例即可;(1)充分条件、必要条件、充要条件的概念.

(2)判断充分、必要条件的基本步骤:①认清条件和结论;②考察p

q

和pq

是否能成立。人教A版必修第一册第一章集合与常用逻辑用语1.4充分条件与必要条件自主预习,回答问题阅读课本17-20页,思考并完成以下问题1.什么是充分条件?2.什么是必要条件?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。⇒充分必要充分必要答案(1)相同,都是p⇒q(2)等价2.做一做(请把正确的答案写在横线上)(1)若p是q的充分条件,q是r的充分条件,则p是r的

条件.(2)“a>0,b>0”是“ab>0”的

条件.(3)“若p,则q”的逆命题为真,则p是q的

条件.【解析】(1)由题意知p⇒q,q⇒r,故p⇒r,所以p是r的充分条件.答案:充分(2)当a>0,b>0时,显然ab>0成立,故“a>0,b>0”是“ab>0”的充分条件答案:充分(3)因为“若p,则q”的逆命题为真,即“若q,则p”为真,所以q⇒p,即p是q的必要条件.答案:必要【思考】(1)若p是q的充分条件,p是惟一的吗?提示:不一定惟一,凡是能使q成立的条件都是它的充分条件,如x>3是x>0的充分条件,x>5,x>10等都是x>0的充分条件.(2)若q是p的必要条件,q是惟一的吗?提示:不一定惟一,凡是由p推出的结论都是它的必要条件,如x>0是x>3的必要条件,x>-1,x>2等都是x>3的必要条件.自主预习,回答问题阅读课本20-22页,思考并完成以下问题1.什么充要条件?2.什么充分不必要条件?3.什么是必要不充分条件?4.什么是既不充分又不必要条件?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。充分必要充要互为充要3.从集合角度看充分、必要条件(1)依据设集合A={x|p(x)},B={x|q(x)}.若x具有性质p,则x∈A;若x具有性质q,则x∈B.若A⊆B,就是说x具有性质p,则x必具有性质q,即p⇒q.类似地,B⊆A与q⇒p等价,A=B与p⇔q等价.(2)结论如果把p研究的范围看成集合A,把q研究的范围看成集合B,则可得下表.当所要研究的p,q含有变量,即涉及方程的解集、不等式的解集,或者与集合有关或所描述的对象可以用集合表示时,可以借助集合间的包含关系,利用Venn图或数轴解题.题型分析举一反三题型一充分条件、必要条件、充要条件的判断解题方法(充分条件与必要条件的判断方法)(1)定义法(2)集合法[答案]D题型二充要条件的探求与证明

解题方法(探求充要条件一般有两种方法)(1)探求A成立的充要条件时,先将A视为条件,并由A推导结论(设为B),再证明B是A的充分条件,这样就能说明A成立的充要条件是B,即从充分性和必要性两方面说明.(2)将原命题进行等价变形或转换,直至获得其成立的充要条件,探求的过程同时也是证明的过程,因为探求过程每一步都是等价的,所以不需要将充分性和必要性分开来说明.题型三充分条件、必要条件、充要条件的应用解题方法(利用充分、必要、充分必要条件的关系求参数范围)(1)化简p、q两命题,(2)根据p与q的关系(充分、必要、充要条件)转化为集合间的关系,(3)利用集合间的关系建立不等关系,(4)求解参数范围.人教A版必修第一册1.5全称量词与存在量词1.5.1全称量词与存在量词1.5.2全称量词命题和存在量词命题的否定

德国著名的数学家哥德巴赫提出这样一个问题:“任意取一个奇数,可以把它写成三个质数之和,比如77,77=53+17+7”,同年欧拉首先肯定了哥德巴赫猜想的正确,并且认为:每一个偶数都是两个质数之和,虽然通过大量检验这个命题是正确的,但是不需要证明.这就是被誉为“数学皇冠上的明珠”的哥德巴赫猜想.200多年后我国著名数学家陈景润才证明了“1+2”即:凡是比某一个正整数大的任何偶数,都能表示成一个质数加上两个质数相乘,或者表示成一个质数加上一个质数.从陈景润的“1+2”到“1+1”似乎仅一步之遥,但它是一个迄今为止仍然没有得到正面证明也没有被推翻的命题.要想正面证明就需要证明“任意一个”“每一个”“都”这种命题成立,要想推翻它只需“存在一个”反例.我们学校为了迎接10月28号的秋季田径运动会,正在排练由1000名学生参加的开幕式团体操表演.这1000名学生符合下列条件:(1)所有学生都来自高二年级;(2)至少有30名学生来自高二.一班;(3)每一个学生都有固定表演路线.结合图片及上述文字,引出“所有”,“至少有”,“每一个”等短语,在逻辑上称为量词.全称量词

下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)x>3(2)2x+1是整数(3)对所有的xR,x>3(4)对任意一个xZ,2x+1是整数是是不是不是(3)在(1)的基础上,用量词“所有的”对变量x进行限定;关系:(3)(4)全称量词命题(4)在(2)的基础上,用短语”对任意一个”对变量x进行限定.探究一一.全称量词命题1.全称量词及表示:短语“对所有的”、“对任意一个”、“对一切”、“对每一个”、“任给”、“所有的”在逻辑中通常叫全称量词。定义:表示:用符号“”表示2.全称量词命题及表示:定义:含有全称量词的命题,叫全称量词命题。表示:全称命题“对M中任意一个x,有含变量x的语句p(x)成立”表示为:读作:“对任意x属于M,有p(x)成立”。(2)所有的正方形都是矩形。都是全称量词命题。例如:命题(1)对任意的nZ,2n+1是奇数;(1)实数都能写成小数形式;(2)凸多边形的外角和等于2练习:用量词“”表达下列命题:(3)任一个实数乘以-1都等于它的相反数xR,x能写成小数形式x{x|x是凸n边形},x的外角和等于2x

R,x·(-1)=-x例1.判断下列全称量词命题的真假.(1)所有的素数都是奇数;(2)xR,|x|+1≥1(3)对每一个无理数x,x2也是无理数解:(1)∵2是素数,但不是奇数.∴全称命题(1)是假命题(2)∵xR,|x|≥0,从而|x|+1≥1∴全称命题(2)是真命题(3)∵是无理数,但

是有理数∴全称命题(3)是假命题思考:如何判断全称量词命题的真假?方法:

若判定一个全称量词命题是真命题,必须对限定集合M中的每个元素x验证P(x)成立;

若判定一个全称量词命题是假命题,只要能举出集合M中的一个x=x0

,使得P(x)不成立即可。关系:存在量词

下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)2x+1=3(2)x能被2和3整除;(3)存在一个x∈R,使2x+1=3;(4)至少有一个x∈Z,x能被2和3整除.(3)在(1)的基础上,用短语“存在一个”对变量x的取值进行限定,使(3)变成了可以判断真假的语句;不是不是是是(4)在(2)的基础上,用“至少有一个”对变量x的取值进行限定,从而使(4)变成了可以判断真假的语句.(3)(4)存在量词命题探究二

短语“存在一个”、“至少有一个”、“有些”、“有一个”、“对某个”、“有的”在逻辑中通常叫做存在量词。存在量词命题“存在M中的一个x,使p(x)成立”可用符号简记为∃x∈M,p(x).二.存在量词命题1.存在量词及表示:定义:用符号“∃”表示,含有存在量词的命题,叫做存在量词命题.表示:2.存在量词命题及表示:定义:表示:读作:“存在一个x属于M,使p(x)成立”.下列命题是不是存在量词命题?(1)有的平行四边形是菱形;(2)有一个素数不是奇数都是存在量词命题.练习:

设q(x):x2=x,使用不同的表达方法写出存在量词命题“∃x∈R,q(x)”解:存在实数x,使x2=x成立至少有一个x∈R,使x2=x成立对有些实数x,使x2=x成立有一个x∈R,使x2=x成立对某个x∈R,使x2=x成立例2下列语句是不是全称量词命题或存在量词命题(1)有一个实数a,a不能取倒数;(2)所有不等式的解集A,都是A⊆R;(3)有的四边形不是平行四边形。存在量词命题全称量词命题存在量词命题例3

判断下列存在量词命题的真假(1)有一个实数x,使x2+2x+3=0;(2)平面内存在两条相交直线垂直于同一条直线;(3)有些平行四边形是菱形.解:(2)由于平面内垂直于同一条直线的两条直线是互相平行的,因此不存在两个相交的直线垂直于同一条直线.所以,存在量词命题(1)是假命题.所以,存在量词命题(2)是假命题.(1)由于,因此使x2+2x+3=0的实数x不存在.(3)由于正方形既是平行四边形又是菱形,所以存在量词命题“有些平行四边形是菱形”是真命题。

要判断存在量词命题“∃x∈M,p(x)”是真命题,只需在集合M中找到一个元素x0,使p(x0)成立即可.思考:如何判断存在量词命题的真假方法:

如果在集合M中,使p(x)成立的元素x不存在,那么这个存在量词命题是假命题.定义:一般地,对一个命题进行否定,就可以得到一个新的命题,这一新命题称为原命题的否定。牛刀小试:说出下列命题的否定(2)空集是集合A={1,2,3}的真子集;否定:

56不是7的倍数;(1)56是7的倍数;否定:空集不是集合A={1,2,3}的真子集;探究三:

含有一个量词的全称量词命题的否定,有下面的结论全称量词命题它的否定从形式看,全称量词命题的否定是存在量词命题。结论:全称量词命题的否定是存在量词命题2)p:每一个四边形的四个顶点在同一个圆上;解:1)存在一个能被3整除的整数不是奇数.2)存在一个四边形,它的四个顶点不在同一个圆上.3)的个位数字等于3.否定:1)所有实数的绝对值都不是正数;2)每一个平行四边形都不是菱形;3)探究四:

一般地,对于含有一个量词的存在量词命题的否定,有下面的结论存在量词命题它的否定

从命题形式看,这三个存在量词命题的否定都变成了全称量词命题.$x0ÎM,p(x0)"xÎM,p(x)存在量词命题的否定是全称量词命题3)有一个偶数是素数.P:解:2)该命题的否定:所有三角形都不是等边三角形3)该命题的否定:任意一个偶数都不是素数例6写出下列命题的否定,并判断真假;(1)任意两个等边三角形都相似;

解:(1)该命题的否定:存在两个对边三角形,它们不相似。因为任意两个等边三角形的三边成比例,所以任意两个等边三角形都相似。因此这是一个假命题。(2)该命题的否定:所以这是一个假命题。达标检测小结:2.一般地,对于含有一个量词的全称量词命题的否定,有下面的结论:全称量词命题它的否定一般地,对于含有一个量词的存在量词命题的否定,有下面的结论:"xÎM,p(x)$x0ÎM,p(x0)存在量词命题它的否定1.(1)全称量词、全称量词命题;(2)存在量词、存在量词命题。人教A版必修第一册第一章集合与常用逻辑用语1.5全称量词与存在量词课程目标

1.理解全称量词与存在量词的含义,熟悉常见的全称量词和存在量词.2.了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及判断命题的真假性.3.能正确地对含有一个量词的命题进行否定,理解全称命题与特称命题之间的关系.数学学科素养1.数学抽象:全称量词命题、存在量词命题与全称量词命题的否定与存在量词命题的否定的理解;2.逻辑推理:通过实例得出全称量词命题、存在量词命题含义,并通过两者的联系与区别得出全称量词命题与存在量词命题的否定;3.数学运算:关于命题真假的判断;4.数据分析:含有一个量词的命题的否定;5.数学建模:通过对全称量词命题、存在量词命题概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力。自主预习,回答问题阅读课本24-26页,思考并完成以下问题1.什么是全称量词?常见的全称量词有哪些?怎样表示全称量词命题?2.什么是存在量词?常见的存在量词有哪些?怎样表示存在量词命题?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做__________,并用符号“∀”表示.(2)含有全称量词的命题,叫做__________________.(3)全称命题的表述形式:对M中任意一个x,有p(x)成立,可简记为:___________,读作“对任意x属于M,有p(x)成立”.(4)全称量词命题的真假判断:要判断一个全称命题量词是真命题,必须对限定集合M中的每一个元素x,验证p(x)成立;但要判断一个全称量词命题是假命题,只需列举出一个x0∈M,使得p(x0)不成立即可.名师点拨常用的全称量词还有“所有”“每一个”“任何”“任意”“一切”“任给”

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论