




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学总复习第3章§3.3等比数列大纲-A3演示文稿设计与制作§3.3等比数列
考点探究·挑战高考考向瞭望·把脉高考3.3等比数列双基研习·面对高考双基研习·面对高考1.等比数列的定义一般地,如果一个数列从_______起,每一项与它的___一项的比等于________,那么这个数列就叫做等比数列,这个常数叫做等比数列的____,公比通常用字母q表示.基础梳理第二项前非零常数公比等比中项na1am·an=ap·ak思考感悟1.等比数列中某项或公比可以为0吗?2.x,y存在等比中项,则x,y满足什么条件?提示:x,y必须满足同号.1.(教材习题改编)b2=ac是a,b,c成等比数列的(
)A.充分不必要条件B.必要非充分条件C.充要条件
D.既不充分也不必要条件答案:B课前热身2.在等比数列{an}中,a1=8,a4=64,则公比q为(
)A.2B.3C.4D.8答案:A3.如果-1,a,b,c,-9成等比数列,那么(
)A.b=3,ac=9B.b=-3,ac=9C.b=3,ac=-9D.b=-3,ac=-9答案:B考点探究·挑战高考考点突破考点一等比数列基本量的计算在等比数列{an}的通项公式和前n项和公式中共有五个量:a1,q,n,an,Sn,一般可以“知三求二”,通过列方程组求出另外两个量.参考教材习题3.5的第1题.例1【名师点评】
解题时,将已知条件转化为基本量间的关系,然后利用方程组的思想求解.考点二等比数列的判定或证明例2等比数列的性质主要针对首尾两项积的性质及推广、等比中项性质、前n项和性质,在解决等比数列中的应用.参考教材3.5中的5题、7题.考点三等比数列的性质及应用例3【思路分析】
(1)寻找a1+a3,a2+a4,a6+a8的等比关系.(2)转化为a3与a5的关系.(3)S3,S6-S3,S9-S6成等比.【思维总结】等比数列性质的使用,其实质是减少未知量的出现,也要与定义结合起来.方法技巧1.在等比数列{an}中,已知a1、q、n、an、Sn中的三个量,求其他两个量,归结为解方程(组)问题,同时结合性质和整体代换,如例1、3方法感悟失误防范1.运用等比数列的求和公式时,需对q=1和q≠1进行讨论.如例3(3),首先确定q≠1.2.由an+1=qan,q≠0,并不能立即断言{an}为等比数列,还要验证a1≠0,如例2.3.使用等比数列的性质时,要注意成立条件.如:等比数列{an}的前n项和为Sn,当且仅当数列{an}是公比为-1,且n是偶数的时候,Sn,S2n-Sn,S3n-S2n不成等比数列.考向瞭望·把脉高考等比数列的定义、判定,通项公式和前n项和公式的探求,等比数列性质的应用是历年高考的必考内容.考查形式类似等差数列,考查题型既有基本题,也有与等差数列、函数、方程、解析几何等知识有关的综合题.考情分析2010年的高考中,大纲全国卷Ⅰ文理都对等比数列进行了考查,有17分的考题,其它省市考题把等比、等差数列综合考查,如重庆文第16题等.预测2012年高考仍将以等比数列的定义、通项公式和前n项和公式为主考查,重点考查运算能力与逻辑思维能力.规范解答例【名师点评】本题主要考查了等比数列的通项公式及前n项和公式,数学中的转化、方程的思想.该题入手很简单,整体难度不大.关键是(1)中的方程组的化简有技巧:每个方程都有同因式可约掉.考查了考生观察与分析的能力.名师预测感谢观看谢谢大家A3演示文稿设计与制作信息技术2.0微能力认证作业中小学教师继续教育参考资料高考数学总复习第课时直接证明与间接证明文-A3演示文稿设计与制作第6课时直接证明与间接证明第6课时直接证明与间接证明考点探究·挑战高考考向瞭望·把脉高考温故夯基·面对高考温故夯基·面对高考证明的结论推理论证成立充分条件内容综合法分析法文字语言因为…所以…或由…得…要证…只需证即证…思考感悟综合法和分析法的区别与联系是什么?提示:综合法的特点是:从“已知”看“可知”,逐步推向“未知”.其逐步推理实际上是寻找它的必要条件.分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”.其逐步推理实际上是寻求它的充分条件.在解决问题时,经常把综合法和分析法综合起来使用.2.间接证明反证法:假设原命题_______
(即在原命题的条件下,结论不成立),经过正确的推理,最后得出_____.因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.不成立矛盾考点探究·挑战高考综合法考点一考点突破综合法是“由因导果”,它是从已知条件出发,顺着推证,经过一系列的中间推理,最后导出所证结论的真实性.用综合法证明的逻辑关系是:A⇒B1⇒B2⇒…⇒Bn⇒B(A为已知条件或数学定义、定理、公理等,B为要证结论),它的常见书面表达是“∵,∴”或“⇒”.例1分析法考点二分析法是“执果索因”,一步步寻求上一步成立的充分条件.它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知(已知条件,已经学过的定义、定理、公理、公式、法则等).用分析法证明命题的逻辑关系是:B⇐B1⇐B2⇐…⇐Bn⇐A.它的常见书面表达是“要证……只需……”或“⇐”.例2【思路分析】
ab⇔a·b=0,利用a2=|a|2求证.平方得|a|2+|b|2+2|a||b|≤2(|a|2+|b|2-2a·b),只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,显然成立.故原不等式得证.【误区警示】本题从要证明的结论出发,探求使结论成立的充分条件,最后找到的恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.这正是分析法证明问题的一般思路.一般地,含有根号、绝对值的等式或不等式,若从正面不易推导时,可以考虑用分析法.反证法考点三反证法体现了正难则反的思维方法,用反证法证明问题的一般步骤是:(1)分清问题的条件和结论;(2)假定所要证的结论不成立,而设结论的反面成立(否定结论);(3)从假设和条件出发,经过正确的推理,导出与已知条件、公理、定理、定义及明显成立的事实相矛盾或自相矛盾(推导矛盾);(4)因为推理正确,所以断定产生矛盾的原因是“假设”错误.既然结论的反面不成立,从而证明了原结论成立(结论成立).例3【思路分析】
(1)利用求和公式先求公差d,(2)利用反证法证明.【名师点评】当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,宜用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.方法感悟方法技巧1.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁琐;综合法从条件推出结论,较简洁地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.2.利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.3.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)”…“即要证”…“就要证”等分析得到一个明显成立的结论P,再说明所要证明的数学问题成立.失误防范1.反证法证明中要注意的问题(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.2.常见的“结论词”与“反设词”原结论词反设词原结论词反设词至少有一个一个也没有对所有x成立存在某个x不成立至多有一个至少有两个对任意x不成立存在某个x成立至少有n个至多有n-1个p或q綈p且綈q至多有n个至少有n+1个p且q綈p或綈q考向瞭望·把脉高考考情分析从近几年的高考试题来看,综合法、反证法证明问题是高考的热点,题型大多为解答题,难度为中、高档;主要是在知识交汇点处命题,像数列,立体几何中的平行、垂直,不等式,解析几何等都有可能考查,在考查数学基本概念的同时,注重考查等价转化、分类讨论思想以及学生的逻辑推理能力.预测2012年广东高考仍将以综合法证明为主要考点,偶尔会出现反证法证明的题目,重点考查运算能力与逻辑推理能力.规范解答例【名师点评】本题考查了数列的计算及反证法的证明,试题为中高档题,易误
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025超市租赁合同书范文
- 2025智能安防系统维修保养合同
- 拿下flag之web学习资料(解题思路、salmap常用工具、文件包含)
- 神经膀胱康复护理
- 建筑安全管理体系构建与实施路径
- 湖北省重点高中智学联盟2024-2025学年高一下学期5月联考历史试卷
- 2025年河南省南阳市方城县多校中考三模语文试题
- 人教版小学语文一年级上册期末试题
- 项脊轩志教案课件
- 生物医学科研绘图技术体系
- 河南省青桐鸣大联考普通高中2024-2025学年高三考前适应性考试语文试题及答案
- 山东省烟台市、德州市、东营市三市东营2025年高考适应性考试烟台德州东营二模英语试卷+答案
- 2025年共青团入团考试测试题库及答案
- 2025年上海市16区初三语文一模试题汇编之古诗文阅读(学生版)
- 【高中化学会考】山西省普通高中毕业会考化学试题样题
- 测量仪器自检记录表(全站仪)
- 2023高考地理高三一轮复习教学计划和备考策略
- 2022年虹口区事业单位公开招聘面试考官练习试题附答案
- Java程序设计项目教程(第二版)教学课件汇总完整版电子教案
- 小学音乐说课万能模板
- 钢结构监理实施细则(全)
评论
0/150
提交评论