




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市花町学校2022年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数(x∈R),则下列结论正确的是()A.函数f(x)是最小正周期为π的奇函数B.函数f(x)的图象关于直线对称C.函数f(x)在区间上是增函数D.函数f(x)的图象关于点对称参考答案:D【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】将函数f(x)化简,根据三角函数的图象和性质判断即可.【解答】解:函数=﹣cos2(x﹣)=﹣cos(2x﹣).最小正周期T=,f(﹣x)=﹣cos(﹣2x﹣)=﹣cos(2x+)≠﹣f(x),不是奇函数,A不对.当x=时,即f()=﹣cos(2×﹣)=﹣,不是最值,B不对.由f(x)在≤2x﹣是单调递减,可得:.∴函数f(x)在区间上是减函数,C不对.当x=﹣时,即f(﹣)=﹣cos(﹣2×﹣)=﹣cos=0.函数f(x)的图象关于点对称.D对.故选:D.2.(
)A.
B.
C.
D.参考答案:C略3.若则实数k的取值范围(
)
A(-4,0)
B
[-4,0)
C(-4,0]
D[-4,0]参考答案:C4.设a<b<0,则下列不等式中不成立的是参考答案:B5.把函数的图象向左平移1个单位,再向上平移1个单位后,所得函数的图像应为()
参考答案:A6.若函数有两个零点,其中,那么在两个函数值中
(
)A.只有一个小于1
B.至少有一个小于1C.都小于1
D.可能都大于1参考答案:B7.平行四边形ABCD中,?=0,且|+|=2,沿BD将四边形折起成直二面角A﹣BD﹣C,则三棱锥A﹣BCD外接球的表面积为()A.4π B.16π C.2π D.参考答案:A【考点】平面向量数量积的运算.【分析】由已知中?=0,可得AB⊥BD,沿BD折起后,将四边形折起成直二面角A一BD﹣C,可得平面ABD⊥平面BDC,可得三棱锥A﹣BCD的外接球的直径为AC,进而根据2||2+||2=4,求出三棱锥A﹣BCD的外接球的半径,可得三棱锥A﹣BCD的外接球的表面积.【解答】解:∵平行四边形ABCD中,?=0,且|+|=2,∴平方得2||2+2?+||2=4,即2||2+||2=4,∵?=0,∴AB⊥BD,沿BD折成直二面角A﹣BD﹣C,∵将四边形折起成直二面角A一BD﹣C,∴平面ABD⊥平面BDC∴三棱锥A﹣BCD的外接球的直径为AC,∴AC2=AB2+BD2+CD2=2AB2+BD2,∵2||2+||2=4,∴AC2=4∴外接球的半径为1,故表面积是4π.故选:A.8.已知f(x)为奇函数,且当x<0时,f(x)=x2+3x+2,则当x∈[1,3]时,f(x)的最小值是()A.2 B. C.﹣2 D.﹣参考答案:C【考点】二次函数在闭区间上的最值.【分析】由条件利用函数的奇偶性求出函数再(0,+∞)上的解析式,再利用二次函数的性质求得当x∈[1,3]时,f(x)的最小值.【解答】解:假设x>0,则﹣x<0,由f(x)为奇函数,当x<0时,f(x)=x2+3x+2,可得f(﹣x)=(﹣x)2+3(﹣x)+2=x2﹣3x+2,即﹣f(x)=x2﹣3x+2,故f(x)=﹣+.当x∈[1,3]时,函数f(x)的最小值为f(3)=﹣2,故选:C.9.已知f(x)的定义域为[1,2],则f(x﹣1)的定义域为(
)A.[1,2] B.[0,1] C.[2,3] D.[0,2]参考答案:C【考点】函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】f(x)的定义域为[1,2],由x﹣1在f(x)的定义域内求解x的取值集合得答案.【解答】解:∵f(x)的定义域为[1,2],∴由1≤x﹣1≤2,解得:2≤x≤3.∴f(x﹣1)的定义域为[2,3].故选:C.【点评】本题考查函数的定义域及其求法,关键是掌握该类问题的解决方法,是基础题.10.在等差数列{an}中,,则(
)A.3 B.6 C.9 D.12参考答案:B【分析】利用等差中项的性质得出关于的等式,可解出的值.【详解】由等差中项的性质可得,由于,即,即,解得,故选:B.【点睛】本题考查等差中项性质的应用,解题时充分利用等差中项的性质进行计算,可简化计算,考查运算能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.不等式的解集是{x│x<-3或x>2},则不等式的解集是
.参考答案:12.设,若,则实数的取值范围是
。参考答案:13.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为
万元. 参考答案:45.6【考点】函数模型的选择与应用. 【专题】应用题. 【分析】先根据题意,设甲销售x辆,则乙销售(15﹣x)辆,再列出总利润S的表达式,是一个关于x的二次函数,最后求此二次函数的最大值即可. 【解答】解:依题意,可设甲销售x(x≥0)辆,则乙销售(15﹣x)辆, ∴总利润S=5.06x﹣0.15x2+2(15﹣x)=﹣0.15x2+3.06x+30=﹣0.15(x﹣10.2)2+45.606. 根据二次函数图象和x∈N*,可知当x=10时,获得最大利润L=﹣0.15×102+3.06×10+30=45.6万元. 故答案为:45.6. 【点评】本题考查函数模型的构建,考查利用配方法求函数的最值,解题的关键是正确构建函数解析式. 14.如图,△ABC是直角三角形,ACB=,PA平面ABC,此图形中有
个直角三角形参考答案:4略15.设偶函数f(x)=a|x+b|在(0,+∞)上单调递增,则f(b﹣2)与f(a+1)的大小关系为.参考答案:f(a+1)>f(b﹣2)【考点】奇偶性与单调性的综合.【专题】转化思想;定义法;函数的性质及应用.【分析】根据函数单调性的定义进行判断即可.【解答】解:∵f(x)=a|x+b|为偶函数,∴f(﹣x)=f(x),即a|﹣x+b|=a|x+b|,则|x﹣b|=|x+b|,解得b=0,则f(x)=a|x|,设t=|x|,则当x≥0时,函数为增函数,若f(x)=a|x|在(0,+∞)上单调递增,则y=at上单调递增,即a>1,则f(b﹣2)=f(﹣2)=f(2),f(a+1)>f(1+1)=f(2),即f(a+1)>f(b﹣2),故答案为:f(a+1)>f(b﹣2).【点评】本题主要考查函数值的大小比较,根据函数奇偶性和单调性的性质求出b=0,a>1是解决本题的关键.16.已知数列{an}满足,且当时,,则an=______.参考答案:【分析】变形递推关系式,再根据叠乘法求结果.【详解】当时,,所以,因此当时,所以因为当时,,所以.【点睛】本题考查利用叠乘法求数列通项,考查基本分析判断与求解能力,属中档题.17.函数
的定义域为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知求的值。参考答案:解析:
19.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求出a的值;(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.参考答案:(1)0.035(2)【分析】(1)由频率分布直方图直接求出a。(2)第1,2组的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为。设从5人中随机抽取3人,利用列举法能求出第2组中抽到2人的概率。【详解】(1)由,得(2)第1,2组抽取的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为.设从5人中随机抽取3人,为共10个基本事件其中第2组恰好抽到2人包含共6个基本事件,从而第2组抽到2人的概率【点睛】根据直方图直接看图求值,题干要求用列举法即需要把所有情况都列举出来,再求概率,属于基础题目。20.(本小题满分12分)
如图四棱锥中,底面是平行四边形,,平面,,,是的中点.
(Ⅰ)求证:平面;
(Ⅱ)试在线段上确定一点,使∥平面,并求三棱锥-的体积.参考答案:解:(Ⅰ)证明:四边形是平行四边形,
,21.已知集合,集合。(1)若,求和(2)若,求实数的取值范围。参考答案:(1)若,则。---------2分,-----------4分(2)因为,------------------------5分若,则,-------------6分若,则或,-----------9分综上,-----------------10分22.设两个非零向量,不共线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酶制剂提取工入职考核试卷及答案
- 出生缺陷防控咨询师成本预算考核试卷及答案
- 移动通信机务员专业知识考核试卷及答案
- 陶瓷原料准备工安全规范考核试卷及答案
- 纺粘和熔喷精密组件清理工安全规范考核试卷及答案
- 绿色建筑施工成本降低措施
- 小学图书室文化推广计划
- 学校改造装饰工程重点特殊部位处理措施
- 学校“三风”建设中常见问题及措施
- 合同编号(豫财招标采购-2026-1992)
- 医院重症护理技能竞赛理论考试(CRRT)试题及答案
- 2025年新乡事业单位招聘考试笔试试卷(附答案)
- 厦门闽南话趣味教学课件
- 2025年秋期新课标人教版六年级上册数学全册教案(核心素养教案)
- 2025秋人教版八年级上册历史全册重点知识点早背晚默
- 2025年标准货物出口合同范本(中英文版)
- 2025年新钢铁安全员考试题库及答案
- 人教版四年级上册数学各单元教材分析(1-4单元)
- 2025版电子购销合同模板
- 护理中医小讲课课件
- 学校均衡编班管理办法
评论
0/150
提交评论