版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄石市英才中学高三数学理上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知为锐角,且有,,则的值是(A)
(B)
(C)
(D)参考答案:C2.设是球心的半径的中点,分别过作垂直于的平面,截球面得两个圆,则这两个圆的面积比值为:(
)(A)(B)(C)(D)参考答案:【解】:设分别过作垂线于的面截球得三个圆的半径为,球半径为,则:
∴
∴这两个圆的面积比值为:
故选D【点评】:此题重点考察球中截面圆半径,球半径之间的关系;【突破】:画图数形结合,提高空间想象能力,利用勾股定理;3.某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y(单位:千瓦·时)与气温x(单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了以下对照表:x(单位:℃)171410-1y(单位:千瓦·时)24343864由表中数据得线性回归方程:,则由此估计:当某天气温为2℃时,当天用电量约为(
)A.56千瓦·时
B.62千瓦·时
C.64千瓦·时
D.68千瓦·时参考答案:A代入回归直线方程,求得所以回归直线方程为当温度为℃时,代入求得千瓦·时所以选A
4.将函数y=sin(2x+)的图象经过怎样的平移后所得图象关于点(,0)中心对称(
)
A.向右平移
B.向右平移
C.向左平移
D.向左平移
参考答案:A5.若是的最小值,则的取值范围为(
)。(A)[-1,2]
(B)[-1,0]
(C)[1,2]
(D)0,2]参考答案:
D
6.若抛物线的焦点与双曲线的一个焦点重合,则双曲线的离心率为(
)A.
B.
C.
D.2参考答案:A7.已知双曲线(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为(A) (B)(C) (D)参考答案:A分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.
8.一束光线从点出发经轴反射到圆C:上的最短路程是
(
)A.4
B.
C.
5
D.参考答案:A略9.“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的(
)A.充分不必要条件
B.必要不充分条件C.充要条件
D.既非充分条件也不是必要条件参考答案:A10.若集合A={x||x|<1},B={x|≥1},则A∪B=()A.(﹣1,1] B.[﹣1,1] C.(0,1) D.(﹣∞,1]参考答案:A【考点】并集及其运算.【分析】分别求出集合A、B的范围,取并集即可.【解答】解:集合A={x||x|<1}=(﹣1,1),B={x|≥1}=(0,1],则A∪B=(﹣1,1],故选:A.【点评】本题考查了集合的并集的运算,考查不等式问题,是一道基础题.二、填空题:本大题共7小题,每小题4分,共28分11.若函数f(x)在定义域D内某区间I上是增函数,且在I上是减函数,则称y=f(x)在I上是“弱增函数”.已知函数h(x)=x2﹣(b﹣1)x+b在(0,1]上是“弱增函数”,则实数b的值为________.参考答案:1略12.已知函数y=f(x)是R上的偶函数,对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x1≠x2时,都有.给出下列命题:①f(3)=0;②直线x=﹣6是函数y=f(x)的图象的一条对称轴;③函数y=f(x)在[﹣9,﹣6]上为增函数;④函数y=f(x)在[﹣9,9]上有四个零点.其中所有正确命题的序号为
(把所有正确命题的序号都填上)参考答案:①②④【考点】函数的零点;函数单调性的判断与证明;函数的周期性;对称图形.【专题】综合题;压轴题.【分析】(1)、赋值x=﹣3,又因为f(x)是R上的偶函数,f(3)=0.(2)、f(x)是R上的偶函数,所以f(x+6)=f(﹣x),又因为f(x+6)=f(x),得周期为6,从而f(﹣6﹣x)=f(﹣6+x),所以直线x=﹣6是函数y=f(x)的图象的一条对称轴(3)、有单调性定义知函数y=f(x)在[0,3]上为增函数,f(x)的周期为6,所以函数y=f(x)在[﹣9,﹣6]上为减函数.(4)、f(3)=0,f(x)的周期为6,所以:f(﹣9)=f(﹣3)=f(3)=f(9)=0.【解答】解:①:对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,令x=﹣3,则f(﹣3+6)=f(﹣3)+f(3),又因为f(x)是R上的偶函数,所以f(3)=0.②:由(1)知f(x+6)=f(x),所以f(x)的周期为6,又因为f(x)是R上的偶函数,所以f(x+6)=f(﹣x),而f(x)的周期为6,所以f(x+6)=f(﹣6+x),f(﹣x)=f(﹣x﹣6),所以:f(﹣6﹣x)=f(﹣6+x),所以直线x=﹣6是函数y=f(x)的图象的一条对称轴.③:当x1,x2∈[0,3],且x1≠x2时,都有所以函数y=f(x)在[0,3]上为增函数,因为f(x)是R上的偶函数,所以函数y=f(x)在[﹣3,0]上为减函数而f(x)的周期为6,所以函数y=f(x)在[﹣9,﹣6]上为减函数.④:f(3)=0,f(x)的周期为6,所以:f(﹣9)=f(﹣3)=f(3)=f(9)=0函数y=f(x)在[﹣9,9]上有四个零点.故答案为:①②④.【点评】本题重点考查函数性质的应用,用到了单调性,周期性,奇偶性,对称轴还有赋值法求函数值.13.在抛物线的焦点为圆心,并与抛物线的准线相切的圆的方程是
。参考答案:14.体积为27的正方体的顶点都在同一个球面上,则该球的半径为_________.参考答案:试题分析:正方体棱长为,则,,.故答案为.考点:正方体与外接球.15.抛物线的准线经过双曲线的一个焦点,则双曲线的离心率为
参考答案:
16.设i为虚数单位,在复平面上,复数对应的点到原点的距离为.参考答案:【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.17.计算:|3﹣i|=,=
.参考答案:,﹣1+3i
【考点】复数代数形式的乘除运算.【分析】根据复数模的定义和复数的混合运算法则计算即可.【解答】解:|3﹣i|==,==﹣1+3i,故答案为:,﹣1+3i.【点评】本题考查了复数模的定义和复数的混合运算,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.
请你设计一个LED霓虹灯灯箱.现有一批LED霓
虹灯灯箱材料如图所示,ABCD是边长为60cm的
正方形LED散片,边CD上有一以其中点M为圆
心,半径为2cm的半圆形缺损,因此切去阴影部分(含半圆形缺损)所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于空间一点P,正好形成一个正四棱柱形状有盖的LED霓虹灯灯箱,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.(1)用规格长×宽×高=145cm×145cm×75cm外包装盒来装你所设计的LED霓虹灯灯箱,灯箱彼此间隔空隙至多0.5cm,请问包装盒至少能装多少只LED霓虹灯灯箱(每只灯箱容积V最大时所装灯箱只数最少)?(2)若材料成本2元/,霓虹灯灯箱销售时以霓虹灯灯箱侧面积S()为准,售价为2.4元/.试问每售出一个霓虹灯灯箱可获最大利润是多少?参考答案:略19.如图,在各棱长均为2的三棱柱ABC﹣A1B1C1中,侧面A1ACC1⊥底面ABC.(1)求三棱柱ABC﹣A1B1C1的体积;(2)已知点D是平面ABC内一点,且四边形ABCD为平行四边形,在直线AA1上是否存在点P,使DP∥平面AB1C?若存在,请确定点P的位置,若不存在,请说明理由.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面平行的性质.【分析】(1)取AC中点O,连结AO,BO,摔倒导出BO⊥面A1ACC1,AO⊥面ABC,由此能求出三棱柱ABC﹣A1B1C1的体积.(2)点P与A1重合时,连结AD,CD,A1D,推导出四边形A1B1CD是平行四边形,从而A1D∥B1C,由此得到DP∥平面AB1C.【解答】解:(1)取AC中点O,连结AO,BO,∵在各棱长均为2的三棱柱ABC﹣A1B1C1中,侧面A1ACC1⊥底面ABC.∴BO⊥面A1ACC1,∴BO⊥AO,A1C=A1A,∴AO⊥AC,∴AO⊥面ABC,∴AO=BO==,∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC?AO===3.(2)点P与A1重合时,DP∥平面AB1C.证明如下:连结AD,CD,A1D,∵四边形ABCD为平行四边形,∴A1B2ABCD,∴四边形A1B1CD是平行四边形,∴A1D∥B1C,∵B1C?平面AB1C,A1D?平面AB1C,∴A1D∥平面AB1C,∴DP∥平面AB1C.【点评】本题考查三棱柱的体积的求法,考查满足线面平行的点的位置的判断与求法,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.20.春季气温逐渐攀升,病菌滋生传播快,为了确保安全开学,学校按30名学生一批,组织学生进行某种传染病毒的筛查,学生先到医务室进行血检,检呈阳性者需到防疫部门]做进一步检测.学校综合考虑了组织管理、医学检验能力等多万面的因素,根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检学生随机等分成若干组,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样合格,不必再做进一步的检测;若结果呈阳性,则本组中的每名学生再逐个进行检测.现有两个分组方案:方案一:将30人分成5组,每组6人;方案二:将30人分成6组,每组5人.已知随机抽一人血检呈阳性的概率为0.5%,且每个人血检是否呈阳性相互独立.(Ⅰ)请帮学校计算一下哪一个分组方案的工作量较少?(Ⅱ)已知该传染疾病的患病率为0.45%,且患该传染疾病者血检呈阳性的概率为99.9%,若检测中有一人血检呈阳性,求其确实患该传染疾病的概率.(参考数据:(,)参考答案:(Ⅰ)方案一工作量更少.(Ⅱ)0.8991【分析】(Ⅰ)设方案一中每组的化验次数为X,则X的取值为1、7,分别求出相应的概率,求出,从而方案一的化验总次数的期望值为:次.设方案二中每组的化验次数为Y,则Y的取值为1、6,分别求出相应的概率,求出.从而方案二的化验总次数的期望为次.由此能求出方案一工作量更少.(Ⅱ)设事件A:血检呈阳性,事件B:患疾病,由题意得,,,由此利用条件概率能求出该职工确实患该疾病的概率.【详解】解:(1)设方案一中每组的化验次数为X,则X的取值为1,7,,∴X的分布列为:X17P0.9700.030
.故方案一的化验总次数的期望值为:次.设方案二中每组的化验次数为Y,则Y的取值为1,6,,,∴Y的分布列为:Y16P0.9750.025
.∴方案二的化验总次数的期望为次.∵,∴方案一工作量更少.(2)设事件A:血检呈阳性,事件B:患疾病,则由题意得,,,由条件概率公式可得,∴该职工确实患该疾病的概率.【点睛】本题考查了概率与数学期望的问题,解题的关键是熟记公式;本题还考查了条件概率的知识.21.某中学甲、乙两班共有25名学生报名参加了一项测试.这25位学生的考分编成如图所示的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.(I)求这两个班学生成绩的中位数及x的值;(II)如果将这些成绩分为“优秀”(得分在175分以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.参考答案:略22.对于函数f(x)(x∈D),若x∈D时,恒有>成立,则称函数是D上的J函数.(Ⅰ)当函数f(x)=mlnx是定义域上的J函数时,求m的取值范围;(Ⅱ)若函数g(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能化医疗设备市场前景分析
- 心血管内科病例分析与诊疗经验
- 护理人员在临床科研中的角色与作用
- 2026年保定幼儿师范高等专科学校高职单招职业适应性测试备考题库带答案解析
- 医疗纠纷预防与处理机制建设
- 2026年鄂尔多斯职业学院单招综合素质笔试模拟试题带答案解析
- 2026年河北科技工程职业技术大学单招职业技能笔试备考题库带答案解析
- 医疗机构医院宣传礼仪培训
- 介入放射科技术革新展示
- 心电图分析与应用
- GB/T 10810.1-2025眼镜镜片第1部分:单焦和多焦
- 高中家长会 高一选科指导家长会课件
- 法院管辖权异议申请书
- 医院主要领导综合能力素质自我评价
- DZ∕T 0399-2022 矿山资源储量管理规范(正式版)
- 2022资源环境承载能力和国土空间开发适宜性评价技术指南
- 大树移植操作规程
- 2022年内蒙古交通运输厅所属事业单位考试真题及答案
- 海水淡化PX能量回收装置维护说明书
- 妇产科学(第9版)第二章女性生殖系统解剖
- 中医经络之-特定穴课件
评论
0/150
提交评论