




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年福建省龙岩市抚市中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间Y统计结果如下:办理业务所需的时间Y/分12345频率0.10.40.30.10.1从第一个顾客开始办理业务时计时,据上表估计第三个顾客等待不超过4分钟就开始办理业务的概率为()A.0.22 B.0.24 C.0.30 D.0.31参考答案:D【考点】C5:互斥事件的概率加法公式.【分析】第三个顾客等待不超过4分钟包括:①第一个顾客办理业务用时1分钟,且第二个顾客办理业务用时1分钟,②第一个顾客办理业务用时1分钟,且第二个顾客办理业务用时2分钟,③第一个顾客办理业务用时1分钟,且第二个顾客办理业务用时3分钟,④第一个顾客办理业务用时2分钟,且第二个顾客办理业务用时1分钟,⑤第一个顾客办理业务用时2分钟,且第二个顾客办理业务用时2分钟,⑥第一个顾客办理业务用时3分钟,且第二个顾客办理业务用时1分钟,且这此时事件彼此是互斥的,分别计算各个事件的概率,利用互斥事件概率加法公式,可得答案.【解答】解:第三个顾客等待不超过4分钟包括:①第一个顾客办理业务用时1分钟,且第二个顾客办理业务用时1分钟,②第一个顾客办理业务用时1分钟,且第二个顾客办理业务用时2分钟,③第一个顾客办理业务用时1分钟,且第二个顾客办理业务用时3分钟,④第一个顾客办理业务用时2分钟,且第二个顾客办理业务用时1分钟,⑤第一个顾客办理业务用时2分钟,且第二个顾客办理业务用时2分钟,⑥第一个顾客办理业务用时3分钟,且第二个顾客办理业务用时1分钟,且这此时事件彼此是互斥的,故第三个顾客等待不超过4分钟的概率P=0.1×0.1+0.1×0.4+0.1×0.3+0.4×0.1+0.4×0.4+0.3×0.1=0.31,故选:D2.棱长都是1的三棱锥的表面积为(
)A. B. C. D.参考答案:A【考点】棱柱、棱锥、棱台的侧面积和表面积.【专题】计算题.【分析】棱长都是1的三棱锥,四个面是全等的正三角形,求出一个面积即可求得结果.【解答】解:因为四个面是全等的正三角形,则.故选A【点评】本题考查棱锥的面积,是基础题.3.下列说法错误的是()A.多面体至少有四个面B.长方体、正方体都是棱柱C.九棱柱有9条侧棱,9个侧面,侧面为平行四边形D.三棱柱的侧面为三角形参考答案:D【考点】空间中直线与平面之间的位置关系.【专题】计算题;对应思想;定义法;空间位置关系与距离.【分析】在A中,面最少的多面体是三棱锥;在B中,长方体和正方体都是四棱柱;在C中,由棱柱的定义判断;在D中,三棱柱的侧面为平行四边形.【解答】解:在A中,面最少的多面体是三棱锥,故最多面体至少有四个面,故A正确;在B中,长方体和正方体都是四棱柱,故B正确;在C中,由棱柱的定义知九棱柱有9条侧棱,9个侧面,侧面为平行四边形,故C正确;在D中,三棱柱的侧面为平行四边形,故D错误.故选:D.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意多面体、棱柱的性质的合理运用.4.某校有高一学生n名,其中男生数与女生数之比为6:5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为的样本,若样本中男生比女生多12人,则n=(
)A.990 B.1320 C.1430 D.1560参考答案:B【分析】根据题意得出样本中男生和女生所占的比例分别为和,于是得出样本中男生与女生人数之差为,于此可求出的值。【详解】依题意可得,解得,故选:B。【点睛】本题考考查分层抽样的相关计算,解题时要利用分层抽样的特点列式求解,考查计算能力,属于基础题。5.在△ABC中,AB=5,BC=6,AC=8,则△ABC的形状是() A.锐角三角形 B.直角三角形 C.钝角三角形 D.非钝角三角形参考答案:C【考点】三角形的形状判断. 【专题】计算题. 【分析】由三角形的三边判断出b为最大边,根据大边对大角可得B为最大角,利用余弦定理表示出cosB,将已知的三边长代入求出cosB的值,由cosB的值小于0及B为三角形的内角,可得B为钝角,即三角形为钝角三角形. 【解答】解:∵AB=c=5,BC=a=6,AC=b=8, ∴B为最大角, ∴由余弦定理得:cosB===﹣<0, 又B为三角形的内角, ∴B为钝角, 则△ABC的形状是钝角三角形. 故选C 【点评】此题考查了三角形形状的判断,涉及的知识有:余弦定理,三角形的边角关系,以及余弦函数的图象与性质,熟练掌握余弦定理是解本题的关键. 6.设,则的最小值是(
)
(A)
2
(B)
4
(C)
(D)
5参考答案:B略7.已知可导函数,则当时,大小关系为
(
)A.
B.
C.
D.参考答案:B略8.在2与16之间插入两个数、,使得成等比数列,则(
)A.4
B.8
C.16
D.32参考答案:D9.如图,在Rt△ABC中,∠ABC=90,PA⊥平面ABC,则四面体P-ABC中共有(
)个直角三角形A.4
B.3
C.2
D.1参考答案:A10.以下给出的是计算的值的一个程序框图(如图所示),其中判断框内应填入的条件是(
)A.i>10
B.i<10
C.i<20
D.I>20参考答案:A无二、填空题:本大题共7小题,每小题4分,共28分11.A,B,C,D四人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻),那么不同的排法有
种.参考答案:1212.已知实数满足约束条件,则的最小值为
.参考答案:313.一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.参考答案:(x﹣)2+y2=【考点】K3:椭圆的标准方程.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.14.已知两圆x2+y2=10和(x﹣1)2+(y﹣3)2=10相交于A,B两点,则直线AB的方程是.参考答案:x+3y﹣5=0
【考点】相交弦所在直线的方程.【分析】把两个圆的方程相减,即可求得公共弦所在的直线方程.【解答】解:把两圆x2+y2=10和(x﹣1)2+(y﹣3)2=10的方程相减可得x+3y﹣5=0,此直线的方程既能满足第一个圆的方程、又能满足第二个圆的方程,故必是两个圆的公共弦所在的直线方程,故答案为:x+3y﹣5=0.15.以D为圆心,1为半径的圆的极坐标方程为
.参考答案:略16.某几何体的三视图如右图(其中侧视图中的圆弧是半圆),则该几何体的表面积为
参考答案:
17.若两个等差数列和的前项和分别是,已知,则等于
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数(1)若函数在处的切线方程为,求的值;(2)讨论方程解的个数,并说明理由。参考答案:(1)因为:
,又在处的切线方程为
所以
解得:
………4分(2)当时,在定义域上恒大于,此时方程无解;……5分当时,在上恒成立,所以在定义域上为增函数。,,所以方程有惟一解。……6分当时,因为当时,,在内为减函数;当时,在内为增函数。所以当时,有极小值即为最小值…7分当时,,此方程无解;当时,此方程有惟一解。当时,因为且,所以方程在区间上有惟一解,因为当时,,所以
所以
因为
,所以所以
方程在区间上有惟一解。所以方程在区间上有惟两解。
……11分
综上所述:当时,方程无解;当时,方程有惟一解;
当时方程有两解。
……12分19.甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为、、,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为.(1)求的值.(2)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.参考答案:(1)记事件=”只有甲破译出密码”,可解得
…………3分(2)的可能取值为0、1,、2、3;分0123P…………8分
…………10分
20.如图,在正方体ABCD中,E、F分别为、中点。 (1)求证:EF//平面ABCD; (2)求两异面直线BD与所成角的大小.参考答案:21.(本小题满分10分)已知,两地相距,在地听到炮弹爆炸声比在地晚,且声速为,求炮弹爆炸点的轨迹方程.参考答案:22.在直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美术机构合作协议合同协议
- 经典煤炭运输合同协议
- 美团送餐员合同协议书模板
- 经营货车销售合同协议
- 非标设备销售合同范本
- 菜鸟驿站加盟合同范本
- 桩基设备租赁合同范本
- 火锅店股份协议合同
- 消防现场评定合同协议
- 消防检测合作合同协议
- 2025届鄂东南省级示范高中联盟高考英语二模试卷含答案
- 2025购销合同范本下载
- 2024年家政服务职业技能大赛家庭照护赛项决赛试理论题库1000题
- 2025年四川省成都市成华区中考二诊英语试题(含笔试答案无听力音频及原文)
- 2025劳动合同范本下载打印
- (四调)武汉市2025届高中毕业生四月调研考试 地理试卷(含答案)
- 管道试压吹扫方案
- Unit 4 Clothes 单元整体(教学设计)-2024-2025学年人教精通版(2024)英语三年级下册
- 大概念视角下的初中数学函数单元整体教学设计研究与实践
- 《建筑装饰设计收费标准》(2024年版)
- 肾上腺皮质功能减退症的护理
评论
0/150
提交评论