




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列表格可以作为ξ的分布列的是()A.B.C.D.2.复数的模为()A. B. C. D.3.设函数,若a=),,则()A. B. C. D.4.在某次高三联考数学测试中,学生成绩服从正态分布,若在内的概率为0.75,则任意选取一名学生,该生成绩高于115的概率为()A.0.25 B.0.1 C.0.125 D.0.55.已知焦点在轴上的双曲线的渐近线方程是,则该双曲线的离心率是()A. B. C. D.6.祖暅是南北朝时代的伟大科学家,公元五世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积恒相等,那么这两个几何体的体积一定相等.设A,B为两个同高的几何体,A,B的体积不相等,A,B在等高处的截面积不恒相等.根据祖暅原理可知,p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.若离散型随机变量的概率分布列如下表所示,则的值为()1A. B. C.或 D.8.若实数满足,则的取值范围为()A. B. C. D.9.已知函数则使函数g(x)=f(x)+x-m有零点的实数m的取值范围是()A.[0,1) B.(-∞,1)C.(-∞,1]∪(2,+∞) D.(-∞,0]∪(1,+∞)10.将一枚质地均匀且各面分别有狗,猪,羊,马图案的正四面体玩具抛掷两次,设事件{两次掷的玩具底面图案不相同},{两次掷的玩具底面图案至少出现一次小狗},则()A. B. C. D.11.若的展开式中各项的二项式系数之和为512,且第6项的系数最大,则a的取值范围为()A. B.C. D.12.设集合,|,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量,则___________14.已知直线的参数方程为(为参数),圆的参数方程为(为参数).若直线与圆有公共点,则实数的取值范围是__________.15.关于的方程的解为________16.若复数z满足方程,其中i为虚数单位,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,曲线在点处的切线方程为.(Ⅰ)求的值;(Ⅱ)求函数的极大值.18.(12分)天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀
非优秀
合计
甲班10乙班30合计110(1)请完成上面的列联表;(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:.0.1000.0500.0250.0100.0012.7063.8415.0246.63510.82819.(12分)已知函数,.若不等式有解,求实数a的取值范围;2当时,函数的最小值为3,求实数a的值.20.(12分)已知函数,对任意的,满足,其中,为常数.(1)若的图象在处的切线经过点,求的值;(2)已知,求证:;(3)当存在三个不同的零点时,求的取值范围.21.(12分)设函数.(1)当时,求的单调区间;(2)当时,恒成立,求的取值范围;(3)求证:当时,.22.(10分)某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:分类积极参加班级工作不太主动参加班级工作总计学习积极性高18725学习积极性一般61925总计242650(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关,并说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据分布列的性质以及各概率之和等于1,能求出正确结果.【详解】根据分布列的性质以及各概率之和等于1,在中,各概率之和为,故错误;在中,,故错误;在中,满足分布列的性质以及各概率之和等于1,故正确;在中,,故错误.故选:.【点睛】本题考查离散型随机变量的分布列的判断,考查分布列的性质以及各概率之和等于1等基础知识,考查运用求解能力,是基础题.2、A【解析】分析:首先根据复数模的公式以及复数的除法运算公式,将复数z化简,然后利用复数模的公式计算求得复数z的模.详解:因,所以,故选A.点睛:该题考查的是有关复数代数形式的除法运算以及复数模的计算公式,在求解的过程中,需要保证公式的正确性,属于简单题目.3、D【解析】
把化成,利用对数函数的性质可得再利用指数函数的性质得到最后根据的单调性可得的大小关系.【详解】因为且,故,又在上为增函数,所以即.故选:.【点睛】本题考查对数的大小比较,可通过寻找合适的单调函数来构建大小关系,如果底数不统一,可以利用对数的运算性质统一底数,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,难度较易.4、C【解析】
根据正态曲线的对称性求解即可得到所求概率.【详解】由题意得,区间关于对称,所以,即该生成绩高于115的概率为.故选C.【点睛】本题考查根据正态曲线的对称性求在给定区间上的概率,求解的关键是把所给区间用已知区间表示,并根据曲线的对称性进行求解,考查数形结合的应用,属于基础题.5、C【解析】分析:由题意,双曲线的焦点在轴上的双曲线的渐近线方程是,求得,利用离心率的公式,即可求解双曲线的离心率.详解:由题意,双曲线的焦点在轴上的双曲线的渐近线方程是,即,所以双曲线的离心率为,故选C.点睛:本题主要考查了双曲线的离心率的求解问题,其中熟记双曲线的标准方程和几何性质是解答的关键,着重考查了推理与运算能力.6、A【解析】分析:利用祖暅原理分析判断即可.详解:设A,B为两个同高的几何体,A,B的体积不相等,A,B在等高处的截面积不恒相等.如果截面面积恒相等,那么这两个几何体的体积一定相等,根据祖暅原理可知,p是q的充分不必要条件.故选:A.点睛:本题考查满足祖暅原理的几何体的判断,是基础题,解题时要认真审查,注意空间思维能力的培养.7、A【解析】由离散型随机变量ξ的概率分布表知:.解得.故选:A.8、C【解析】分析:作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z的取值范围.详解:作出不等式组对应的平面区域如图:设,得,平移直线,由图象可知当直线经过点时,直线的截距最小,此时z最小,为,当直线经过点时,直线的截距最大,此时时z最大,为,即.故选:C.点睛:本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.9、D【解析】试题分析:函数的零点就是方程的根,作出的图象,观察它与直线的交点,得知当时,或时有交点,即函数有零点.考点:函数的零点.点评:本题充分体现了数形结合的数学思想.函数的零点、方程的根、函数图像与x轴的交点,做题时注意三者之间的等价转化.10、C【解析】
利用条件概率公式得到答案.【详解】故答案选C【点睛】本题考查了条件概率的计算,意在考查学生的计算能力.11、C【解析】
计算,计算,,,根据系数的大小关系得到,解得答案.【详解】,,,,,第6项的系数最大,,则.故选:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.12、C【解析】
解出集合M中的不等式即可【详解】因为,所以故选:C【点睛】本题考查的是解对数不等式及集合的运算,属于基本题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用正态密度曲线的对称性得出,可得出答案。【详解】由于随机变量,正态密度曲线的对称轴为直线,所以,,故答案为:。【点睛】本题考查正态分布概率的计算,解这类问题的关键就是要充分利用正态密度曲线的对称轴,利用对称性解题,考查计算能力,属于基础题。14、【解析】试题分析:∵直线的普通方程为,圆C的普通方程为,∴圆C的圆心到直线的距离,解得.考点:参数方程与普通方程的转化、点到直线的距离.15、4或7【解析】
根据组合数的性质,列出方程,求出的值即可.【详解】解:∵,
∴或,
解得或.故答案为:4或7.【点睛】本题考查了组合数的性质与应用问题,是基础题目.16、2【解析】
设,利用复数的乘法运算计算得到即可.【详解】由已知,设,则,所以,解得,故,.故答案为:2.【点睛】本题考查复数的乘法、复数模的运算,涉及到复数相等的概念,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)将点代入切线方程得出,利用导数的几何意义得出,于此列方程组求解出实数、的值;(Ⅱ)求出函数的定义域,然后对函数求导,利用导数求出函数的单调区间,分析出该函数的极大值点并求出该函数的极大值。【详解】(Ⅰ)由,得.由曲线在点处的切线方程为,得,,解得.(Ⅱ),.,解得;,解得;所以函数的增区间:;减区间:,时,函数取得极大值,函数的极大值为.【点睛】本题考查导数的几何意义,考查利用导数求函数的极值,求解时要熟练应用导数求函数极值的基本步骤,另外在处理直线与函数图象相切的问题时,抓住以下两个要点:(1)函数在切点处的导数值等于切线的斜率;(2)切点是切线与函数图象的公共点。18、(1)优秀非优秀合计甲班105060乙班203050合计3080110(2)按99.9%的可靠性要求,不能认为“成绩与班级有关系”(3).【解析】
试题分析:思路分析:此类问题(1)(2)直接套用公式,经过计算“卡方”,与数表对比,作出结论.(3)是典型的古典概型概率的计算问题,确定两个“事件”数,确定其比值.解:(1)4分优秀非优秀合计甲班105060乙班203050合计3080110(2)根据列联表中的数据,得到K2≈7.487<10.1.因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”(3)设“抽到9或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36个.事件A包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7个.所以P(A)=,即抽到9号或10号的概率为.考点:“卡方检验”,古典概型概率的计算.点评:中档题,独立性检验问题,主要是通过计算“卡方”,对比数表,得出结论.古典概型概率的计算中,常用“树图法”或“坐标法”确定事件数,以防重复或遗漏.19、(Ⅰ)(Ⅱ).【解析】分析:(1)由绝对值的几何意义知,由不等式f(x)≤2﹣|x﹣1|有解,可得,即可求实数a的取值范围;(2)当a<2时,画出函数的图像,利用函数f(x)的最小值为3,求实数a的值.详解:(1)由题,即为.而由绝对值的几何意义知,由不等式有解,∴,即.实数的取值范围.(2)函数的零点为和,当时知.
如图可知在单调递减,在单调递增,,得(合题意),即.点睛:这个题目考查了含有绝对值的不等式的解法,绝对值三角不等式的应用,以及函数的最值问题;一般对于解含有多个绝对值的不等式,根据零点分区间,将绝对值去掉,分段解不等式即可.20、(1)见解析;(2)见解析.【解析】试题分析:(1)由和解得;(2)化简,构造函数,根据函数的单调性,证明的最小值大于零即可;(3)讨论三种情况,,,排除前两种,证明第三种情况符合题意即可.试题解析:(1)在中,取,得,又,所以.从而,,.又,所以,.(2).令,则,所以时,,单调递减,故时,,所以时,.(3),①当时,在上,,递增,所以,至多只有一个零点,不合题意;②当时,在上,,递减,所以,也至多只有一个零点,不合题意;③当时,令,得,.此时,在上递减,上递增,上递减,所以,至多有三个零点.因为在上递增,所以.又因为,所以,使得.又,,所以恰有三个不同的零点:,,.综上所述,当存在三个不同的零点时,的取值范围是.考点:1、导数的几何意义;2、利用导数研究函数的单调性、求函数的最值及函数零点问题.【方法点晴】本题主要考查的是导数的几何意义、利用导数研究函数的单调性、求函数的最值、函数零点问题立,属于难题.利用导数研究函数的单调性进一步求函数最值的步骤:①确定函数的定义域;②对求导;③令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间④根据单调性求函数的极值及最值(闭区间上还要注意比较端点处函数值的大小).本题(2)、(3)解题过程都是围绕先求单调区间再求最值这一思路,进一步解答问题的.21、(1)的单调递减区间为;的单调递增区间为;(2);(3)见解析.【解析】【试题分析】(1)直接对函数求导得,借助导函数值的符号与函数单调性之间的关系求出其单调区间;(2)先将不等式中参数分离分离出来可得:,再构造函数,,求导得,借助,推得,从而在上单调递减,,进而求得;(3)先将不等式等价转化为,再构造函数,求导可得,由(2)知时,恒成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版定制门窗设计与安装合同书
- 2025年车贷抵押贷款合同执行与监管
- 2025年度智能交通系统建设与运营合同
- 二零二五年度房地产项目投资分析合同模板
- 二零二五版知识产权保护服务合作协议书
- 二零二五年木工小班组家具生产与市场推广承包合同
- 2025版文化旅游产品销售代理合同
- 2025年度荒料石材买卖及石材行业人才培养合同
- 2025版电梯安装与定期维护保养合同书
- 二零二五版餐饮业与旅行社跨界融合合同
- 讲解员技能测试题库及答案
- 战略项目管理试题及答案
- 神经外科实操考试题及答案
- 四川省绵阳市2024-2025学年下学期八年级期末数学试卷
- 中央空调施工组织方案
- 基于灰污特性识别的电站锅炉智能吹灰系统设计及实践应用
- 《电力建设火力发电厂工程智慧工地技术标准》
- 2025至2030年中国模型即服务(MaaS)行业市场全景调研及发展前景研判报告
- 《光伏电站项目全过程管理手册》(第三分册:施工、验收、运维)
- 设计院建筑管理制度
- 2025至2030年中国量子级联激光器(QCL)行业市场专项调研及投资前景研究报告
评论
0/150
提交评论