


付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DNA微阵列数据的变量选择方法研究的中期报告AbstractDNAmicroarraytechnologyplaysasignificantroleincancerresearch.Theselectionofgenesforanalysisiscrucialinidentifyingthebiomarkersforcancerdiagnosisandtreatment.Inthisstudy,weaimtoinvestigatetheperformanceofdifferentvariableselectionmethodsonDNAmicroarraydataforcoloncancerprediction.Themethodsevaluatedincludethet-test,foldchange,Lasso,andRandomForests.WeanalyzedthegeneexpressiondataofcoloncancerusingtheAffymetrixHumanGenomeU133Plus2.0Array,whichconsistsof54,675probesets.Thedatawaspreprocessed,andgeneswithlowvariancewerefilteredout,leaving19,796probesets.Thedatawassplitintotrainingandtestingsets,witharatioof2:1.TheresultsshowedthattheLassoandRandomForestsmethodsoutperformedthet-testandfoldchangemethodsintermsofaccuracy,precision,andrecall.Lassoselected18genes,whileRandomForestsselected14genes.Theoverlapbetweentheselectedgeneswasminimal,indicatingthatthetwomethodsprovidecomplementaryinformation.Futureworkwillfocusonvalidatingtheselectedgenesusingindependentdatasetsandintegratingtheselectedgenesintoapredictivemodelforcoloncancerdiagnosisandprognosis.IntroductionColoncancerisacommonmalignanttumorworldwide.Earlydiagnosisandtreatmentarecrucialtoimprovepatientprognosis.DNAmicroarraytechnologyallowssimultaneousanalysisoftheexpressionlevelsofthousandsofgenes,providingapowerfultoolforcancerdiagnosisandtreatment.However,thehighdimensionalityofDNAmicroarraydatapresentsachallengefordataanalysis,asthenumberofvariablesgreatlyexceedsthenumberofobservations.Variableselectionisanessentialstepinanalyzinghigh-dimensionaldata,asitreducesthenumberofvariableswhilemaintainingorimprovingtheaccuracyoftheanalysis.Manyvariableselectionmethodshavebeenproposed,includingthet-test,foldchange,Lasso,andRandomForests.Inthisstudy,weaimtocomparetheperformanceofthesemethodsinselectinggenesforcoloncancerdiagnosis.MethodologyDatacollectionandpreprocessingWeobtainedthegeneexpressiondataofcoloncancerfromtheGeneExpressionOmnibus(GEO)database(accessionnumberGSE39582).ThedatawasgeneratedusingtheAffymetrixHumanGenomeU133Plus2.0Array,whichconsistsof54,675probesetsrepresentingover47,000transcriptsandvariants.ThedatawaspreprocessedusingtheRobustMultiarrayAverage(RMA)algorithm,whichincludesbackgroundcorrection,normalization,andsummarization.Probesetswithlowvariancewerefilteredout,leaving19,796probesetsforanalysis.VariableselectionWeappliedfourvariableselectionmethodstothepreprocesseddata:t-test,foldchange,Lasso,andRandomForests.Thet-testandfold-changemethodsarecommonlyusedfordifferentialexpressionanalysis.Thet-testmeasuresthedifferenceinmeanexpressionlevelsbetweentwogroups,whilefoldchangecalculatestheratioofexpressionlevelsbetweentwogroups.TheLassoandRandomForestsmethodsaremachinelearning-basedmethodsthataimtoselectfeaturesthataremostinformativeforprediction.ModelevaluationWeevaluatedtheperformanceofeachvariableselectionmethodbytrainingalogisticregressionmodelontheselectedgenesandtestingitontheindependenttestingdataset.Weusedtheareaunderthereceiveroperatingcharacteristiccurve(AUC)toevaluatethemodel'sperformance.Additionally,wecalculatedtheaccuracy,precision,andrecallofthemodel.ResultsTheLassoandRandomForestsmethodsoutperformedthet-testandfoldchangemethodsintermsofAUC,accuracy,precision,andrecall(Table1).TheLassomethodselected18genes,whiletheRandomForestsmethodselected14genes.Theoverlapbetweentheselectedgeneswasminimal,indicatingthatthetwomethodsprovidecomplementaryinformation.Table1.Comparisonofvariableselectionmethods|Method|Numberofselectedgenes|AUC|Accuracy|Precision|Recall||--------|------------------------|-----|----------|-----------|--------||T-test|237|0.74|0.72|0.72|0.71||Foldchange|278|0.75|0.69|0.71|0.68||Lasso|18|0.83|0.78|0.80|0.75||RandomForests|14|0.84|0.79|0.81|0.75|ConclusionandFutureWorkInthisstudy,wecomparedtheperformanceoffourvariableselectionmethodsonDNAmicroarraydataforcoloncancerprediction.TheresultsshowedthattheLassoandRandomForestsmethodsoutperformedthet-testandfoldchangemethodsintermsofaccuracy,precision,andrecall.Additionally,theLassoandRandomForestsmethodsselectedlargelynon-overlappingsetsofgenes,indicatingthattheyprovidecomplementaryinformation.Futureworkwillfocusonvalidatingtheselectedgenesusingindependen
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025重庆璧山高新技术产业开发区管理委员会招聘临时工作人员4人考试参考试题及答案解析
- 2025中铁众德(衡水)教育咨询服务有限公司招聘4人考试参考试题及答案解析
- 2025年汉中市杨河学校教师招聘(4人)考试参考试题及答案解析
- 2025年生态农业病虫害防治专用农药及绿色种子采购合作协议
- 2025年度国家级剧院舞美设计聘用协议书
- 2025年影视改编授权合同-原稿小说修订版
- 2025年度外资企业行政人事管理及员工全面成长支持服务合同
- 2025年度离婚财产分割子女抚养协议及费用明细模板
- 2025年金融数据共享与保密合作协议
- 2025年企业技术骨干在职研究生教育基金支持合同
- 加油、加气、充电综合站项目可行性研究报告
- 2025年科研项目经理专业知识考试题目答案解析
- 2025广东肇庆市怀集县卫生事业单位招聘102人笔试模拟试题及答案解析
- 青马考试题目及答案
- 2024-2025学年广东省深圳市南山区四年级(下)期末数学试卷
- 2025秋数学(新)人教五年级(上)第1课时 小数乘整数
- 算力中心计算任务优化方案
- 《数字技术应用基础模块》技工中职全套教学课件
- 房屋拆除专项施工方案(3篇)
- 劳务派遣工作知识培训课件
- AutoCAD电气工程制图 课件 项目1 低压配电柜的绘制与识图
评论
0/150
提交评论