




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3.2简单的线性规划问题(2)xyo一、线性规划在实际中的应用:线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务下面我们就来看看线性规划在实际中的一些应用:
例1、一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐15t。现库存磷酸盐10t、硝酸盐66t,在此基础上生产这两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。并计算生产甲、乙两种肥料各多少车皮,能够产生最大的利润?解:设x、y分别为计划生产甲、乙两种混合肥料的车皮数,于是满足以下条件:xyo解:设生产甲种肥料x车皮、乙种肥料y车皮,能够产生利润Z万元。目标函数为Z=x+0.5y,可行域如图:把Z=x+0.5y变形为y=-2x+2z,它表示斜率为-2,在y轴上的截距为2z的一组直线系。
xyo由图可以看出,当直线经过可行域上的点M时,截距2z最大,即z最大。
故生产甲种、乙种肥料各2车皮,能够产生最大利润,最大利润为3万元。M
容易求得M点的坐标为(2,2),则Zmin=3三、练习题
某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元,甲、乙产品都需要在A、B两种设备上加工,在每台A、B上加工1件甲所需工时分别为1h、2h,A、B两种设备每月有效使用台数分别为400h和500h。如何安排生产可使收入最大?
设每月生产甲产品x件,生产乙产品y件,每月收入为z,目标函数为Z=3x+2y,满足的条件是Z=3x+2y
变形为
它表示斜率为的直线系,Z与这条直线的截距有关。XYO400200250500
当直线经过点M时,截距最大,Z最大。M解方程组可得M(200,100)Z的最大值Z=3x+2y=800故生产甲产品200件,乙产品100件,收入最大,为80万元。zxxkw四.课时小结
线性规划的两类重要实际问题的解题思路:
1.应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数。
2.用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解.(一般最优解在直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CIQA 82-2024汽油辛烷值试验机检维修技术规范
- T/CIES 035-2024生鲜食用农产品照明光源显色性规范
- T/CHEC 007-2021自动平移门安装验收技术规范
- T/CGCC 72-2022公用纺织品洗涤废水回用水质要求
- T/CGCC 54.5-2021网络平台环境下文化领域内容交易规范
- T/CECS 10364-2024燃气燃烧器具工业互联网标识编码
- T/CECS 10175-2022建筑用谷纤维复合门窗
- T/CECS 10035-2019绿色建材评价金属复合装饰材料
- T/CECS 10032-2019绿色建材评价保温系统材料
- T/CECS 10029-2019绿色建材评价建筑密封胶
- 《光伏发电工程预可行性研究报告编制规程》(NB/T32044-2018)中文版
- 租赁房屋委托书(8篇)
- 医院培训课件:《消毒隔离》
- 人工智能数学基础全套教学课件
- 尿毒症患者的护理健康评估
- 论社会系统研究方法及其运用读马克思主义与社会科学方法论有感
- 钢结构焊接技术的操作技巧与要点
- 《高速铁路客运服务礼仪》试题及答案 项目7 试题库
- 颈内静脉血栓形成的护理查房
- 食堂阿姨培训课件
- (完整版)年产30万吨甲醇工艺设计毕业设计
评论
0/150
提交评论