稳派教育2022-2023学年数学高二下期末质量检测模拟试题含解析_第1页
稳派教育2022-2023学年数学高二下期末质量检测模拟试题含解析_第2页
稳派教育2022-2023学年数学高二下期末质量检测模拟试题含解析_第3页
稳派教育2022-2023学年数学高二下期末质量检测模拟试题含解析_第4页
稳派教育2022-2023学年数学高二下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问111名不同的大学生是否爱好某项运动,利用列联表,由计算可得P(K2>k)

1.11

1.14

1.124

1.111

1.114

1.111

k

2.615

3.841

4.124

5.534

6.869

11.828

参照附表,得到的正确结论是()A.有8.4%以上的把握认为“爱好该项运动与性别无关”B.有8.4%以上的把握认为“爱好该项运动与性别有关”C.在犯错误的概率不超过1.14%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过1.14%的前提下,认为“爱好该项运动与性别无关”2.设,则的值为()A.29 B.49C.39 D.593.若,若,则实数的值为()A. B. C. D.4.已知函数,则曲线在处的切线的倾斜角为()A. B. C. D.5.有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种 B.48种C.96种 D.144种6.已知函数满足对任意实数,都有,设,,()A.2018 B.2017 C.-2016 D.-20157.已知函数的导函数为,且满足关系式,则的值等于()A. B. C. D.8.使不等式成立的一个充分不必要条件是()A. B. C.或 D.9.已知展开式中第三项的二项式系数与第四项的二项式系数相同,且,若,则展开式中常数项()A.32 B.24 C.4 D.810.同时具有性质“①最小正周期是”②图象关于对称;③在上是增函数的一个函数可以是()A. B.C. D.11.在复平面上,复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若复数满足,则复数的虚部为.A.-2 B.-1 C.1 D.2.二、填空题:本题共4小题,每小题5分,共20分。13.数列{an}满足,若{an}单调递增,则首项a1的范围是_____.14.一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.其中所有正确结论的序号是________.15.曲线在点处的切线方程为_______.16.在的展开式中的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中.(1)当时,求曲线在点处的切线方程;(2)当时,若函数在区间上的最小值为,求的取值范围.18.(12分)().(1)当时,求的单调区间;(2)若,存在两个极值点,,试比较与的大小;(3)求证:(,).19.(12分)已知函数的最小正周期为.(1)当时,求函数的值域;(2)已知的内角,,对应的边分别为,,,若,且,,求的面积.20.(12分)已知函数,(1)当,时,求函数在上的最小值;(2)若函数在与处的切线互相垂直,求的取值范围;(3)设,若函数有两个极值点,,且,求的取值范围.21.(12分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:不等式对于任意恒成立.(1)若命题为真命题,求实数的取值范围;(2)若命题为真,为假,求实数的取值范围.22.(10分)在平面直角坐标系中,已知曲线的参数方程为(为参数).以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.点为曲线上的动点,求点到直线距离的最大

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】解:计算K2≈8.815>6.869,对照表中数据得出有1.114的几率说明这两个变量之间的关系是不可信的,即有1−1.114=8.4%的把握说明两个变量之间有关系,本题选择B选项.2、B【解析】

根据二项式特点知,,,,,为正,,,,,为负,令,得.【详解】因为,,,,为正,,,,,为负,令,得,故选:B.【点睛】本题主要考查了二项式的系数,还考查了运算求解的能力,属于基础题.3、B【解析】

令,将二项式转化为,然后利用二项式定理求出的系数,列方程求出实数的值.【详解】令,则,所以,展开式的通项为,令,得,,解得,故选B.【点睛】本题考查二项式定理,考查利用二项式定理指定项的系数求参数的值,解题的关键依据指数列方程求参数,利用参数来求解,考查计算能力,属于中等题.4、B【解析】

求得的导数,可得切线的斜率,由直线的斜率公式,可得所求倾斜角.【详解】函数的导数为,可得在处的切线的斜率为,即,为倾斜角,可得.故选:B.【点睛】本题主要考查了导数的几何意义,函数在某点处的导数即为曲线在该点处的切线的斜率,是解题的关键,属于容易题.5、C【解析】试题分析:,故选C.考点:排列组合.6、D【解析】

通过取特殊值,可得,进一步可得,然后经过计算可得,最后代值计算,可得结果.【详解】由题可知:令,可得令,则所以又由,所以又所以,由所以故选:D【点睛】本题考查抽象函数的应用,难点在于发现,,考验观察能力以及分析问题的能力,属中档题.7、D【解析】

求得函数的导数,然后令,求得的值.【详解】依题意,令得,,故选D.【点睛】本小题在导数运算,考查运算求解能力,属于基础题.8、A【解析】

首先解出不等式,因为是不等式成立的一个充分不必要条件,所以满足是不等式的真子集即可.【详解】因为,所以或,需要是不等式成立的一个充分不必要条件,则需要满足是的真子集的只有A,所以选择A【点睛】本题主要考查了解不等式以及命题之间的关系,属于基础题.9、B【解析】

先由二项展开式中第三项的二项式系数与第四项的二项式系数相同,求出;再由求出,由二项展开式的通项公式,即可求出结果.【详解】因为展开式中第三项的二项式系数与第四项的二项式系数相同,所以,因此,又,所以,令,则,又,所以,因此,所以展开式的通项公式为,由得,因此展开式中常数项为.故选B【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于常考题型.10、B【解析】

利用所给条件逐条验证,最小正周期是得出,把②③分别代入选项验证可得.【详解】把代入A选项可得,符合;把代入B选项可得,符合;把代入C选项可得,不符合,排除C;把代入D选项可得,不符合,排除D;当时,,此时为减函数;当时,,此时为增函数;故选B.【点睛】本题主要考查三角函数的图象和性质,侧重考查直观想象的核心素养.11、D【解析】

直接把给出的复数写出代数形式,得到对应的点的坐标,则答案可求.【详解】由题意,复数,所以复数对应的点的坐标为位于第一象限,故选A.【点睛】本题主要考查了复数的代数表示,以及复数的几何意义的应用,其中解答中熟记复数的代数形式和复数的表示是解答本题的关键,着重考查了推理与运算能力,属于基础题.12、D【解析】

根据复数除法的运算法则去计算即可.【详解】因为,所以,虚部是,故选D.【点睛】本题考查复数的除法运算以及复数实部、虚部判断,难度较易.复数除法运算时,注意利用平方差公式的形式将分母实数化去计算二、填空题:本题共4小题,每小题5分,共20分。13、(﹣∞,﹣1)∪(3,+∞)【解析】

先表示出,结合{an}单调递增可求首项a1的范围.【详解】因为,所以,解得或,则有或由于,所以或解得或,故答案为:.【点睛】本题主要考查数列的单调性,数列的单调性一般通过相邻两项差的符号来确定,侧重考查逻辑推理和数学运算的核心素养.14、①②④.【解析】

①根据古典概型概率公式结合组合知识可得结论;②根据二项分布的方差公式可得结果;③根据条件概率进行计算可得到第二次再次取到红球的概率;④根据对立事件的概率公式可得结果.【详解】①从中任取3个球,恰有一个白球的概率是,故①正确;②从中有放回的取球次,每次任取一球,取到红球次数,其方差为,故②正确;③从中不放回的取球次,每次任取一球,则在第一次取到红球后,此时袋中还有个红球个白球,则第二次再次取到红球的概率为,故③错误;④从中有放回的取球3次,每次任取一球,每次取到红球的概率为,至少有一次取到红球的概率为,故④正确,故答案为①②④.【点睛】本题主要考查古典概型概率公式、对立事件及独立事件的概率及分二项分布与条件概率,意在考查综合应用所学知识解决问题的能力,属于中档题.解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.15、【解析】试题分析:时直线方程为,变形得考点:导数的几何意义及直线方程16、45【解析】分析:根据展开式的通项公式,求出展开式中的系数,即可得出的展开式中的系数是多少.详解:展开式的通项公式为:,令,得的系数为,且无项,的展开式中的系数为45.故答案为:45.点睛:求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项公式即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(1)[3,+∞).【解析】

(1)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出a的范围即可.【详解】(1)当a=1时,f(x)=x1﹣7x+3lnx(x>2),∴,∴f(1)=﹣6,f'(1)=﹣1.∴切线方程为y+6=﹣1(x﹣1),即1x+y+4=2.(1)函数f(x)=ax1﹣(a+6)x+3lnx的定义域为(2,+∞),当a>2时,,令f'(x)=2得或,①当,即a≥3时,f(x)在[1,3e]上递增,∴f(x)在[1,3e]上的最小值为f(1)=﹣6,符合题意;②当,即时,f(x)在上递减,在上递增,∴f(x)在[1,3e]上的最小值为,不合题意;③当,即时,f(x)在[1,3e]上递减,∴f(x)在[1,3e]上的最小值为f(3e)<f(1)=﹣6,不合题意.综上,a的取值范围是[3,+∞).【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.18、(1)递减,递增(2)(3)详见解析【解析】试题分析:(1)求出函数的定义域,求出导数,求得单调区间,即可得到极值;(2)求出导数,求得极值点,再求极值之和,构造当0<t<1时,g(t)=2lnt+-2,运用导数,判断单调性,即可得到结论;(3)当0<t<1时,g(t)=2lnt+-2>0恒成立,即lnt+-1>0恒成立,设t=(n≥2,n∈N),即ln+n-1>0,即有n-1>lnn,运用累加法和等差数列的求和公式及对数的运算性质,即可得证试题解析:(Ⅰ),定义域,,递减,递增(Ⅱ),,,,,(也可使用韦达定理)设,当时,,当时,,在上递减,,即恒成立综上述(Ⅲ)当时,恒成立,即恒成立设,即,考点:利用导数研究函数的极值;导数在最大值、最小值问题中的应用19、(Ⅰ)(Ⅱ)【解析】

(1)利用周期公式求出ω,求出相位的范围,利用正弦函数的值域求解函数f(x)的值域;(2)求出A,利用余弦定理求出bc,然后求解三角形的面积.【详解】解:(1)的最小正周期是,得,当时,所以,此时的值域为(2)因为,所以,∴,的面积【点睛】本题考查三角函数的性质以及三角形的解法,余弦定理的应用,考查计算能力.20、(1);(2)或;(3)【解析】

(1)求导后可得函数的单调性,从而得到;(2)利用切线互相垂直可知,展开整理后可知关于的方程有解,利用可得关于的不等式,解不等式求得结果;(3)根据极值点的定义可得:,,从而得到且,进而得到,令,利用导数可证得,从而得到所求范围.【详解】(1)当,时,,则当时,;当时,在上单调递减;在上单调递增(2)由解析式得:,函数在与处的切线互相垂直即:展开整理得:则该关于的方程有解整理得:,解得:或(3)当时,是方程的两根,且,,令,则在上单调递增即:【点睛】本题考查导数在研究函数中的作用,涉及到函数最值的求解、导数几何意义的应用、导数与极值之间的关系;本题的难点在于根据极值点的定义将转化为关于的函数,从而通过构造函数的方式求得函数的最值,进而得到取值范围.21、(1).【解析】

(1)由命题得命题由命题为真,得为真命题或为真命题,列m的不等式求解即可;(2)由命题为真,为假

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论