版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄市滕州市第一职业中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知点、、、,则向量在方向上的投影为()A.B.C.D.参考答案:A略2.已知命题使;给出下列结论:①命题“”是真命题 ②命题“”是假命题③命题“”是真命题; ④命题“”是假命题其中正确的是()A.②③ B.②④ C.③④ D.①②③参考答案:A3.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a>2参考答案:C【考点】利用导数研究函数的极值.【专题】计算题.【分析】题目中条件:“函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值”告诉我们其导数有两个不等的实根,利用二次方程根的判别式可解决.【解答】解:由于f(x)=x3+ax2+(a+6)x+1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选C.【点评】本题主要考查利用导数研究函数的极值,导数的引入,为研究高次函数的极值与最值带来了方便.4.若的大小关系(
)A.
B.
C.
D.与的取值有关参考答案:A略5.对命题“正三角形的内切圆切与三边的中点”可类比猜想出:正四面体的内切球切与四面都为正三角形的什么位置?(
)A.各三角形内的点
B.各正三角形的中心C.各正三角形的某高线上的点
D.三条棱的中点参考答案:B6.已知圆C:x2+y2+mx﹣4=0上存在两点关于直线x﹣y+3=0对称,则实数m的值()A.8 B.﹣4 C.6 D.无法确定参考答案:C【考点】直线和圆的方程的应用;恒过定点的直线.【分析】因为圆上两点A、B关于直线x﹣y+3=0对称,所以直线x﹣y+3=0过圆心(﹣,0),由此可求出m的值.【解答】解:因为圆上两点A、B关于直线x﹣y+3=0对称,所以直线x﹣y+3=0过圆心(﹣,0),从而﹣+3=0,即m=6.故选C.7.过抛物线的焦点作直线交抛物线于,两点,如果,那么=(
)A.10
B.8
C.6
D.4参考答案:B略8.如图是一个几何体的三视图,在该几何体的各个面中.面积最小的面的面积为()A.4 B.4 C.4 D.8参考答案:B【考点】L!:由三视图求面积、体积.【分析】作出直观图,根据三视图数据计算各个表面的面积比较得出.【解答】解:根据三视图作出物体的直观图如图所示:显然S△PCD>S△ABC.由三视图特征可知PA⊥平面ABC,DB⊥平面ABC,AB⊥AC,PA=AB=AC=4,DB=2,∴BC=4,∴S△ABC==8,S△PAC==8,S△BCD==4.S梯形PABD==12.∴△BCD的面积最小.故选B.【点评】本题考查了空间几何体的三视图和结构特征,多面体的面积计算,属于基础题.9.已知函数,且=2,则的值为
A.1
B.
C.-1
D.0参考答案:A略10.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a、b不共线,则四边形ABCD为(
)A.平行四边形
B.矩形
C.梯形
D.菱形参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知矩形ABCD,AB=1,BC=a,PA⊥面ABCD,若在BC上只有一点Q满足PQ⊥DQ,则a值等于___________参考答案:212.点满足:,则点到直线的最短距离是________参考答案:13.已知变量x,y满足,则2x+y的最大值为.参考答案:8【考点】简单线性规划.【分析】作出不等式组对应的平面区域,设z=x+y,利用z的几何意义,先求出z的最大值,即可得到结论.【解答】解:作出不等式组对应的平面区域如图:设z=x+y,则y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时y=﹣x+z的截距最大,此时z最大.由,解得,即A(1,2),代入z=x+y得z=1+2=3.即z=x+y最大值为3,∴2x+y的最大值为23=8.故答案为:8.【点评】本题主要考查线性规划的应用以及指数函数的运算,利用z的几何意义结合数形结合是解决本题的关键.14.设f(z)=2z(cos+icos),这里z是复数,用A表示原点,B表示f(1+i)所对应的点,C表示点-所对应的点,则∠ABC=
。参考答案:15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是__________(写出所有正确结论的编号).①矩形;
②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;
⑤每个面都是直角三角形的四面体.参考答案:①③④⑤考点:棱柱的结构特征.专题:综合题.分析:先画出图形,再在底面为正方形的长方体上选择适当的4个顶点,观察它们构成的几何形体的特征,从而对五个选项一一进行判断,对于正确的说法只须找出一个即可.解答:解:如图:①正确,如图四边形A1D1BC为矩形②错误任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1D1BC为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.故答案为①③④⑤点评:本题主要考查了点、线、面间位置特征的判断,棱柱的结构特征,能力方面考查空间想象能力和推理论证能力,属于基础题.找出满足条件的几何图形是解答本题的关键16.如图,平面四边形ABCD中,,,将△ABD沿对角线BD折起,得四面体ABCD,使得点A在平面BCD上的射影在线段BC上,设AD与平面BCD所成角为,则=
▲
.参考答案:略17.设向量a,b,c满足,,,若,则的值是________参考答案:4∵a+b+c=0,∴c=-(a+b).∵(a-b)⊥c,∴(a-b)·[-(a+b)]=0.即|a|2-|b|2=0,∴|a|=|b|=1,∵a⊥b,∴a·b=0,∴|c|2=(a+b)2=|a|2+2a·b+b2=1+0+1=2.∴|a|2+|b|2+|c|2=4.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:实验顺序第一次第二次第三次第四次第五次零件数x(个)1020304050加工时间y(分钟)6266758488(1)请根据五次试验的数据,求出y关于x的线性回归方程;(2)根据(1)得到的线性回归方程预测加工70个零件所需要的时间.参考公式:,,其中,.参考答案:(1);(2)分钟.(1),,(2分),,(6分)所以关于的线性回归方程为.(8分)(2)由(1)知关于的线性回归方程为当时,所以预测加工个零件需要分钟的时间.(12分)19.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得=80,=20,=184,=720.(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;111](Ⅱ)判断变量x与y之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.参考答案:(Ⅰ)y=0.3x-0.4(Ⅱ)正相关(Ⅲ)1.7考点:线性回归方程20.在△ABC中,角A,B,C所对的边分别为a,b,c,已知acosB+bcosA=2ccosC.(1)求角C的大小;(2)若a=5,b=8,求边c的长.参考答案:【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理、和差公式即可得出.(2)利用余弦定理即可得出.【解答】解:(1)acosB+bcosA=2ccosC,∴sinAcosB+sinBcosA=2sinCcosC∴sin(A+B)=sinC=2sinCcosC,sinC≠0,解得cosC=,C∈(0,π),∴C=.(2)由余弦定理可得:c2=52+82﹣2×5×8cos=49,解得c=7.21.某产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下数据:
x24568y3040605070
(1)画出散点图.
(2)求y关于x的回归直线方程.
(3)预测广告费为9百万元时的销售额是多少?(12分)
参考答案:(3)22.已知复数,,其中(1)若复数为实数,求m的取值范围;(2)求的最小值。参考答案:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025 小学六年级语文下册 亲情友情 对话细节捕捉课件
- 【项目方案】5MWh液冷储能一体柜项目技术方案(200MW-400MWh独立储能)202505
- 跨境电商2025年供应链管理合同协议
- 口腔种植体采购合同(医疗机构用)2025年保密条款
- 2025年AI语音合成服务终止协议
- 就业协议(2025年派遣用工)
- 承台、地系梁、桥台施工方案
- 银行跨岗位面试题及答案
- 深度解析(2026)《GBT 34362-2017无损检测 适形阵列涡流检测导则 》
- 外科学总论肾移植术后感染的预防护理措施要点课件
- 2026年安全员考试题库300道附完整答案【必刷】
- 【2022年版】义务教育英语课程标准(附解读)
- T/JSGS 017-2023树脂复合材料装配式给水检查井技术规范
- 公司投资款合同范本
- 委派合同样本
- 《食品机械安全与卫生设计分析与研究》
- 辅助戒烟用尼古丁咀嚼胶项目可行性实施报告
- 声波震动发梳项目评价分析报告
- 红楼梦李纨的故事
- 小说阅读专题复习(部编版六年级)
- DLT1249-2013 架空输电线路运行状态评估技术导则
评论
0/150
提交评论