版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
The
LMS
AlgorithmDr
Y.L.FuAnother
algorithm
for
descending
on
theperformance
surface
is
proposed
as
LMS(least-mean-square)
algorithm,
in
where
somespecial
estimates
of
the
gradient
are
used.
So,it
is
used
strictly.LMS
algorithm
is
important
because
ofits
simplicity
and
easy
of
computation.Derivation
of
the
LMS
algorithmFrom
previous
chapters,
we
have
seen
theadaptive
algorithms.
The
basic
structure
isW
(k
+1)=
W
(k
)-
m
error(k
)The
error
may
be
the
gradient
in
chapter
4
and
5W
(k
+1)=
W
(k
)-
m
~
(k
)Dr
Y.L.Fue(k
)=
d
(k
)-
X
T
(k
)WDr
Y.L.FuFor
the
linear
combination
filterthe
algorithm
is
just
the
LMS
algorithmW
(k
+1)=
W
(k
)+
m
2e(k)X
(k
)No
squaring,
averaging
and
or
differentiation
in
thealgorithm.
It’s
really
simple
and
effect.Convergence
of
the
weight
vector
is
consideredDr
Y.L.Fufirst=
-2E(d
(k
)X
(k
)-
X
(k
)=
2(RW
-
P)=E
~
(k
))=
-2E(e(k
)X
(k
)So,
the
estimate is
a
unbiased
estimate
of~In
chapter
2,
the
convergence
can
be
seen
forstationary
input
processes.
(E(W(k))
converges
toW*=R-1P)Taking
expectation
we
haveE(W
(k
+1
)=
E(W
(k
)+
m
2E(e(k)X
(k
)=
E(W
(k
)+
2m
(E(d(k)X
(k
)-
E(X
(k
)X
T
(k
)W
(k
))Assumption:
X
(k
)and
W
(k
)are
independentE
W k
+1
)=
E
W
k
)+
2m
P
-
RE
W
k
)=
(I
-
2mR)E(W
(k
)+
2mRW
*Dr
Y.L.FuTaking
the
transform
of
rotation,
we
get'0kE(V
(k
)=
(
L
)V¢I
-
2mThe
convergence
is
guaranteed
only
if1>
m
>
0lmaxlmax
£
tr(L
)=
tr(R),Dr
Y.L.Fu1tr
(R
)0
<
m
<SinceExample∑Z-1∑sin
2pkNDr
Y.L.Furk0ww∑yke(k
)1
dk2pk
N=
2
cos2Dr
Y.L.Fukf
=
E
r
)Suppose
rk
are
independent
of
each
other.
2
k+
r
=
0.5
+f2pk
NE(x2
(k
))=
E
sinNNN=
0.5
cos
2p
k
E(x(k
)x(k
-1
)=
E
sin
2pk
+
r
sin
2p
(k
-1)
r
+k
-1
Dr
Y.L.Fu
1+
2f
coscos
2p
1+
2f2pNN
R=
0.5
0
1
1220
1N
N+
w
w
cos
2p
+
2w
sin
2p
+
2e
=
(0.5
+f)w
+
w
)
Dr
Y.L.Fu
N
w
w
N
2p
-
sin01+
2f
2pN
coscos
2p
1+
2f*
1
*0
=
2
w1+
2
2-
cos22220
1
w*
0
=
(
f)
-
cos
(
p
/
N
)
-
2(1+
2f)sin(2p
/
N
)
2p
/
N(1+
2f)
(
)
2
cos(2p
/
N
)sin(2p
/
N
)
tr
R)=
2
0.5
+f)=1.02,
if
f
=
0.010
<
m
<
0.98Learning
curvern
=1-
2mln
,
n
=
0,1,...,
Lnn2ml1t
=nnmse1,
n
=
0,1,...,
L4ml(t
)
=nDr
Y.L.Funmsenmse1,
n
=
0,1,...,
L4ml(T
)
=
(t
)
=Time
constantCalculate
the
eigenvalues
of
R
with
φ=0.01Dr
Y.L.Ful1
=
0.972,
l2
=
0.048The
corresponding
time
constants
areTmse
)1
=
5
iterations(Tmse
)2
=104
iterationsAs
the
analysis
of
adaptive
algorithms
in
previouschapters,
we
need
to
consider
the
noise.Dr
Y.L.Fu=
k
+
Nkˆkcov(Nk
)=
E
Nk
Nk
)=
4E
e
(k
)X
(k
)X
(k
))T
2
Te2
(k
)
is
approximately
uncorrelated
with
the
signal=
P
-
P
=
0vector
since
E(e(k
)X
(k
)W
=W
*Thus,k
)X
(k
)
)e
(k
)E X
(Tkmin2cov(N
)=
4e
R=
4E(
)Transform
it
into
principle
axisDr
Y.L.Fu-1'
-1Q=
4e
L=
Q
cov(N
N
)=
cov
Q
N
)cov
N
)Tk
k
minkkUsing
the
result
obtained
in
the
last
chapter2'2'2'kkk'kcov
Ncov(N
)
cov(-1=(L
-
mL
)
(
)m4=
(I
-
2mL
)
V
)+
m
cov(N
)it
gives)4=
m
e
min
(L-
m
L
)
L2
-1cov
(V
¢(k
)=
m
(L-
m
L
2
)-1
cov
(N'kNeglect
the
small
termDr
Y.L.Fuwe
get
an
approximationmL2mink
min'cov
V
)=
me
L-1L
=
me
ITransforming
back
to
the
space
VQk'cov(V
(k
)=
memin
I=
Q
cov
V
)-1V
(k
)=
QV
(k
)cov(V
(k
)=
cov(QV
¢(k
)=
E
QV
¢(k
)V
¢T
(k
)QT
)whereMisadjustment
=Nn
nkk
kTn=0'2''excess
MSE
=
E(V
L
V
)l
E(v
)LM
=
excess
M
=
mtr(R)Dr
Y.L.Fuexcess
MSE
=
memin
ln
=
memintr(R)n=0From
the
definitioneminIn
order
to
design
a
system
when
the
eigenvaluesare
unknown,
we
should
establish
somerelationshipThe
time
constant
for
the
nth
mode
of
the
learningcurvennmse4ml1(t
)
=nDr
Y.L.FumseL
tr(R)=
m
tmse
av(t
)=4L
+1
1ln
=
4mL
1
1
n=0n=0ThenSpecially,
for
equal
eigenvaluesM
=
L
+14tminThe
trace
of
the
R-matrix
is
the
total
power
ofthe
input
to
the
weights,
which
is
generallyknown.
So,
we
apply
it
to
produce
a
desired
Mby
choosing
a
value
of
μ.In
the
case
of
equal
eigenvaluesDr
Y.L.Fumset4mtr(R)=
L
+1
This
can
be
an
approximation
of
the
timeconstant,
in
the
general
case.Misadjustment
equals
number
of
weightsdivided
by
settling
time,
when
the
eigenvaluesare
equal.Dr
Y.L.FuWe
get
a
rule
of
thumb
to
estimate
the
MPerformanceCompare
the
steepest-descent
method
with
theLMS
algorithmM
T
av
mse
mse=4L
+
1
18
P
T
aveminmtr
(R
)=4
Nd
2m
(L
+
1)
(L
+
1)2
1-P2
l
av
e
mindMtotnDr
Y.L.FunmsennmseTt4
ml2
ml4
ml1M14
mlM
+
P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中关村第三小学双新分校招聘备考题库含答案详解
- 2026年建筑材料工业备考题库中心招聘备考题库及答案详解1套
- 2026年广元市利州区荣山镇卫生院关于公开招聘编制外工作人员的备考题库及1套参考答案详解
- 2026年关于师市农普办招聘工作人员的备考题库及一套答案详解
- 2026年中共安丘市委、安丘市人民政府外聘法律顾问的备考题库及完整答案详解一套
- 2026年吉林省一地事业单位公开选聘29人备考题库及参考答案详解一套
- 2026年北京中企时代科技有限公司霍林郭勒分公司招聘备考题库及答案详解参考
- 2025年佛山市南海区桂城街道映月中学教师招聘备考题库及参考答案详解一套
- 2026年中国人寿保险股份有限公司博尔塔拉蒙古自治州分公司招聘备考题库及答案详解参考
- 2026年宁波市鄞工大数据有限公司公开招聘市场化高级业务人员备考题库及参考答案详解1套
- 酒店经理客房服务质量与管理效率绩效评定表
- 普通高中化学课程标准(2025年修订版)与2020年版对比
- 低空智能-从感知推理迈向群体具身
- 福建国有资产管理公司招聘面试题及答案
- 四川省2025年高职单招职业技能综合测试(中职类)电子信息类试卷
- 2025年熔化焊接与热切割作业考试题库及答案
- 账务清理合同(标准版)
- 质量互变课件
- 幼儿园重大事项社会稳定风险评估制度(含实操模板)
- 2026年包头轻工职业技术学院单招职业适应性测试题库附答案
- 2025至2030中国应急行业市场深度分析及发展趋势与行业项目调研及市场前景预测评估报告
评论
0/150
提交评论