版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门市双十中学2021-2022学年高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的一条对称轴方程是
(
)
A.
B.
C.
D.参考答案:A略2.若P(A)+P(B)=1,则事件A与B的关系是()A.A与B是互斥事件B.A与B是对立事件C.A与B不是互斥事件D.以上都不对参考答案:D3.若点P(sinα﹣cosα,tanα)在第一象限,则在[0,2π)内α的取值范围是()A.(,)∪(,)B.(,)∪(,)C.(,)∪(,)D.(,)∪(,)参考答案:B【考点】正弦函数的单调性;象限角、轴线角;正切函数的单调性.【专题】计算题.【分析】先根据点P(sinα﹣cosα,tanα)在第一象限,得到sinα﹣cosα>0,tanα>0,进而可解出α的范围,确定答案.【解答】解:∵故选B.【点评】本题主要考查正弦、正切函数值的求法.考查基础知识的简单应用.4.对某地农村家庭拥有电器情况抽样调查如下:有电视机的占60%;有洗衣机的占55%;有电冰箱的占45%;至少有上述三种电器中的两种及两种以上的占55%;三种都有的占20%.那么没有任何一种电器的家庭占的比例是
A.5%
B.10%
C.12%
D.15%参考答案:D5.已知,是两个不同的平面,是两条不同的直线,下列命题中错误的是(
)A.若∥,,,则B.若∥,,,则C.若,,,则⊥D.若⊥,,,,则参考答案:A【分析】根据平面和直线关系,依次判断每个选项得到答案.【详解】A.若,,,则如图所示情况,两直线为异面直线,错误其它选项正确.故答案选A【点睛】本题考查了直线平面的关系,找出反例是解题的关键.6.设偶函数f(x)的定义域为R,函数g(x)=,则下列结论中正确的是()A.|f(x)|g(x)是奇函数 B.f(x)g(x)是偶函数C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数参考答案:A【考点】函数奇偶性的性质.【分析】由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.【解答】解:f(x)是偶函数f(x),函数g(x)=是奇函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)g(x)为奇函数,|f(x)|g(x)为奇函数,故选:A.7.在平面上,四边形ABCD满足,,则四边形ABCD为(
)A.梯形 B.正方形 C.菱形 D.矩形参考答案:C,且四边形是平行四边形,,,四边形是菱形,故选C.8.在下列函数中,与函数是同一个函数的是(
)A.
B.
C.
D.参考答案:D略9.设等比数列各项均为正数,且则
(A)12
(B) (C)8 (D)10参考答案:B10.如果函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数,那么实数a取值范围是(
)A.a≤﹣3 B.a≥﹣3 C.a≤5 D.a≥5参考答案:A【考点】二次函数的性质.【专题】计算题.【分析】先用配方法将二次函数变形,求出其对称轴,再由“在(﹣∞,4]上是减函数”,知对称轴必须在区间的右侧,求解即可得到结果.【解答】解:∵f(x)=x2+2(a﹣1)x+2=(x+a﹣1)2+2﹣(a﹣1)2其对称轴为:x=1﹣a∵函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数∴1﹣a≥4∴a≤﹣3故选A【点评】本题主要考查二次函数的单调性,解题时要先明确二次函数的对称轴和开口方向,这是研究二次函数单调性和最值的关键.二、填空题:本大题共7小题,每小题4分,共28分11.(5分)已知f(x)=,则f(1)=
.参考答案:3考点: 函数的值.专题: 函数的性质及应用.分析: 直线把f(x)中的x换为1,能求出f(1)的值.解答: ∵f(x)=,∴f(1)==3.故答案为:3.点评: 本题考查函数值的求法,是基础题,解题时要注意函数性质的合理运用.12.在△ABC中,若b=2asinB,则A=______.参考答案:30°或150°【分析】利用正弦定理,可把变形为,从而解出,进而求出.【详解】且,或.故答案或.【点睛】本题考查了正弦定理的应用,解得本题的关键是利用了正弦定理的变形,,,属于基本知识的考查.13.(5分)已知tanθ=﹣sin,则tan(θ+)=
.参考答案:考点: 两角和与差的正切函数;同角三角函数基本关系的运用.专题: 三角函数的求值.分析: 依题意,可得tanθ=﹣,利用两角和的正切公式即可求得答案.解答: 解:∵tanθ=﹣sin=sin=﹣,∴tan(θ+)===.故答案为:.点评: 本题考查两角和与差的正切函数,考查诱导公式的应用,属于中档题.14.如图,为测量出高MN,选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角,C点的仰角以及;从C点测得.已知山高,则山高MN=__________m.参考答案:150试题分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案为150.考点:正弦定理的应用.15.已知sinα﹣cosα=,0≤α≤π,则sin(2)=
.参考答案:考点:两角和与差的正弦函数.专题:三角函数的求值.分析:由题意和同角三角函数基本关系可得sinα和cosα,进而由二倍角公式可得sin2α和cos2α,代入两角差的正弦公式计算可得.解答: 解:∵sinα﹣cosα=,sin2α+cos2α=1,又∵0≤α≤π,∴sinα≥0,解方程组可得+,∴sin2α=2sinαcosα=,cos2α=cos2α﹣sin2α=﹣,∴sin(2)=sin2α﹣cos2α==故答案为:点评:本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系和二倍角公式,属中档题.16.一个正方体的各顶点均在同一球的球面上,若该球的表面积为12π,则该正方体的体积为.参考答案:8考点: 球内接多面体.专题: 球.分析: 由题意求出正方体的对角线的长,就是球的直径,求出正方体的棱长,然后正方体的体积.解答: 解:一个正方体的各个顶点都在一个表面积为12π的球面上,所以4πr2=12所以球的半径:,正方体的棱长为a:a=2,a=2,所以正方体的体积为:8.故答案为:8点评: 本题是基础题,考查正方体的外接球的表面积,求出正方体的体积,考查计算能力.17.若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分析,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分析,则集合A={a1,a2,a3}的不同分析种数是
.参考答案:27【考点】交、并、补集的混合运算.【专题】新定义;分类讨论.【分析】考虑集合A1为空集,有一个元素,2个元素,和集合A相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,利用二次项定理即可求出值.【解答】解:当A1=?时必须A2=A,分析种数为1;当A1有一个元素时,分析种数为C31?2;当A1有2个元素时,分析总数为C32?22;当A1=A时,分析种数为C33?23.所以总的不同分析种数为1+C31?21+C32?22+C33?23=(1+2)3=27.故答案为:27【点评】此题考查了交、并、补集的混合运算,考查了分类讨论的数学思想,是一道综合题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB(1)求证:EA⊥平面EBC(2)求二面角C﹣BE﹣D的余弦值.参考答案:【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)根据线面垂直的判定定理即可证明EA⊥平面EBC;(2)求出平面的法向量,利用向量法进行求解即可.【解答】(1)∵平面ABE⊥平面ABCD,且AB⊥BC,∴BC⊥平面ABE,∵EA?平面ABE,∴EA⊥BC,∵EA⊥EB,EB∩BC=B,∴EA⊥平面EBC(2)取AB中O,连接EO,DO.∵EB=EA,∴EO⊥AB.∵平面ABE⊥平面ABCD,∴EO⊥平面ABCD∵AB=2CD,AB∥CD,AB⊥BC,∴DO⊥AB,建立如图的空间直角坐标系O﹣xyz如图:设CD=1,则A(0,1,0),B(0,﹣1,0),C(1,﹣1,0),D(1,0,0),E(0,0,1),由(1)得平面EBC的法向量为=(0,1,﹣1),设平面BED的法向量为=(x,y,z),则,即,设x=1,则y=﹣1,z=1,则=(1,﹣1,1),则|cos<,>|===,故二面角C﹣BE﹣D的余弦值是.19.(10分)(2015秋?余姚市校级期中)已知函数f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),设h(x)=f(x)﹣g(x).(1)求函数h(x)的定义域,判断h(x)的奇偶性,并说明理由;(2)求使h(x)>0的x的取值范围.参考答案:【考点】函数奇偶性的判断;函数的定义域及其求法.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】(1)先得到h(x)=loga(1+x)﹣loga(1﹣x),可以得出h(x)的定义域为(﹣1,1),求h(﹣x)=﹣h(x),从而得出h(x)为奇函数;(2)由h(x)>0可得到loga(1+x)>loga(1﹣x),可讨论a:分a>1和0<a<1两种情况,根据对数函数的单调性便可求出每种情况下x的取值范围.【解答】解:(1)h(x)=loga(1+x)﹣loga(1﹣x);解得,﹣1<x<1;∴h(x)的定义域为(﹣1,1);h(﹣x)=loga(1﹣x)﹣loga(1+x)=﹣h(x);∴h(x)为奇函数;(2)由h(x)>0得,loga(1+x)>loga(1﹣x);①若a>1,则:;∴0<x<1;②若0<a<1,则:;∴﹣1<x<0;∴a>1时,使h(x)>0的x的取值范围为(0,1),0<a<1时,x的取值范围为(﹣1,0).【点评】考查对数的真数大于0,函数定义域的概念及求法,奇函数的定义及判断方法和过程,以及对数函数的单调性.20.已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.参考答案:【考点】三角函数的周期性及其求法;两角和与差的余弦函数;三角函数的最值.【分析】(Ⅰ)利用两角和公式和二倍角公式对函数的解析式进行化简整理后,利用正弦函数的性质求得函数的最小正周期.(Ⅱ)利用x的范围确定2x+的范围,进而利用正弦函数的单调性求得函数的最大和最小值.【解答】解:(Ⅰ)∵,=4cosx()﹣1=sin2x+2cos2x﹣1=sin2x+cos2x=2sin(2x+),所以函数的最小正周期为π;(Ⅱ)∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=,即x=时,f(x)取最大值2,当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1.21.设函数,其中向量,.(1)求函数的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知,,△ABC的面积为,求△ABC外接圆半径R.参考答案:(1),的单调递减区间是;(2).试题分析:(1)用坐标表示向量条件,代入函数解析式中,运用向量的坐标运算法则求出函数解析式并应用二倍角公式以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电机与电气控制技术 课件 任务7.1.1交流异步电机的调速控制
- 某著名企业高层管理人员薪酬调查报告0729
- 人血白蛋白临床使用规范总结2026
- 《GBT 9734-2008化学试剂 铝测定通 用方法》专题研究报告
- 《GBT 5009.49-2008发酵酒及其配制酒卫生标准的分析方法》专题研究报告
- 《GBT 22402-2008摄影 加工用化学品 无水硫代硫酸钠和五水合硫代硫酸钠》专题研究报告长文
- 《FZT 52048-2017有机阻燃粘胶短纤维》专题研究报告
- 道路安全教育培训班课件
- 道路交通类法律培训课件
- 2026年高校时政热点试题含解析及答案
- 眼镜验光师试题(及答案)
- 选人用人方面存在的问题及改进措施
- 项目管理流程标准作业程序手册
- 自我介绍礼仪课件
- 卫生院孕优知识培训课件
- 2025-2030工业窑炉烟气多污染物协同控制技术
- 培训机构台账
- 电商预算表格财务模板全年计划表格-做账实操
- 泵车日常管理办法
- 骨科术后疼痛评估与护理查房
- 输液泵的使用培训课件
评论
0/150
提交评论