




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省晋城市高平野川中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知偶函数(x)在区间[0,+∞)单调增加,则满足的x取值范围是(
)
参考答案:A略2.若正数,满足+3=5,则3+4的最小值是
(
)A.
B.
C.5
D.6参考答案:C3.命题“若α=,则tanα=”的逆否命题是(
)A.若α≠,则tanα≠ B.若α=,则tanα≠C.若tanα≠,则α≠ D.若tanα≠,则α=参考答案:C【考点】四种命题间的逆否关系.【专题】综合题;转化思想;综合法;简易逻辑.【分析】根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,可写出答案.【解答】解:命题“若α=,则tanα=”的逆否命题是“若tanα≠,则α≠”.故选:C.【点评】基础题,掌握逆否命题定义即可得出答案.4.过双曲线x2-=1的右焦点F作直线l交双曲线于A,B两点,若|AB|=4,则这样的直线有(
)
A.1条
B.2条
C.3条
D.4条参考答案:C略5.甲乙两位同学同住一小区,甲乙俩同学都在7:00~7:20经过小区门口.由于天气下雨,他们希望在小区门口碰面结伴去学校,并且前一天约定先到者必须等候另一人5分钟,过时即可离开.则他俩在小区门口碰面结伴去学校的概率是()A. B. C. D.参考答案:D【考点】列举法计算基本事件数及事件发生的概率.【分析】由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω={(x,y)|0≤x≤20,0≤y≤20},集合对应的面积是边长为20的正方形的面积S=20×20=400,而满足条件的事件对应的集合是A═{(x,y)|},由此能求出两人能够会面的概率.【解答】解:由题意知本题是一个几何概型,∵试验发生包含的所有事件对应的集合是Ω={(x,y)|0≤x≤20,0≤y≤20}集合对应的面积是边长为20的正方形的面积S=20×20=400,而满足条件的事件对应的集合是A═{(x,y)|},作出可行域,得:
两人能够会面的概率是p==故选:D.6.区间[0,5]上任意取一个实数x,则满足x[0,1]的概率为A. B. C. D.参考答案:A【分析】利用几何概型求解即可.【详解】由几何概型的概率公式得满足x[0,1]的概率为.故选:A【点睛】本题主要考查几何概型的概率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.7.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.参考答案:B【考点】CF:几何概型.【分析】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论.【解答】解:∵AB=2,BC=1,∴长方体的ABCD的面积S=1×2=2,圆的半径r=1,半圆的面积S=,则由几何槪型的概率公式可得质点落在以AB为直径的半圆内的概率是,故选:B.8.直线y=kx-k+1与椭圆的位置关系为(
)A.相交
B.相切
C.相离
D.不确定参考答案:A略9.设,当时取得极大值,当时取得极小值,则的取值范围为(
)
A.
B.
C.
D.
参考答案:D略10.阅读如图所示的程序框图,则输出的S=()A.45
B.35C.21
D.15参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.下列说法中正确的有____________________①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响;②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确。④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型。参考答案:③12.用秦九韶算法求多项式f(x)=x6﹣5x5+6x4﹣3x3+1.8x2+0.35x+2,在x=﹣1的值时,v2的值是.参考答案:12【考点】秦九韶算法.【分析】首先把一个n次多项式f(x)写成(…((a[n]x+a[n﹣1])x+a[n﹣2])x+…+a[1])x+a[0]的形式,然后化简,求n次多项式f(x)的值就转化为求n个一次多项式的值,求出V3的值.【解答】解:∵f(x)=x6﹣5x5+6x4﹣3x3+1.8x2+0.35x+2=((x﹣5)x+6)x﹣3)x+1.8)x+0.35)x+2,∴v0=a6=1,v1=v0x+a5=1×(﹣1)﹣5=﹣6,v2=v1x+a4=﹣6×(﹣1)+6=12,∴v2的值为12,故答案为12.【点评】本题考查排序问题与算法的多样性,通过数学上的算法,写成程序,然后求解,属于中档题.13.对于直线l:y=k(x+1)与抛物线C:y2=4x,k=±1是直线l与抛物线C有唯一交点的
条件(填充要,充分不必要,必要不充分,既不充分又不必要)。参考答案:充分不必要14.参考答案:略15.在的展开式中,各项系数的和为
.
参考答案:16.将n个正整数1,2,3,…,n(N*)分成两组,使得每组中没有两个数的和是一个完全平方数,且这两组数中没有相同的数.那么n的最大值是
.参考答案:14略17.函数的定义域为_______________;
参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)箱子中装有6张卡片,分别写有1到6这6个整数.从箱子中任意取出一张卡片,记下它的读数,然后放回箱子,第二次再从箱子中取出一张卡片,记下它的读数,试求:(Ⅰ)是5的倍数的概率;(Ⅱ)是3的倍数的概率;(Ⅲ)中至少有一个5或6的概率。参考答案:基本事件共有6×6=36个。(Ⅰ)x+y是5的倍数包含以下基本事件:(1,4)(4,1)(2,3)(3,2)(4,6)(6,4)(5,5)共7个。所以,x+y是5的倍数的概率是。 …………4分(Ⅱ)x·y是3的倍数包含的基本事件(如图)共20个,所以,x·y是3的倍数的概率是。
…………8分(Ⅲ)此事件的对立事件是x,y都不是5或6,其基本事件有个,所以,x,y中至少有一个5或6的概率是.
………12分19.试分别用辗转相除法和更相减损术求840与1764、440与556的最大公约数。参考答案:(1)用辗转相除法求840与1764的最大公约数。
1764=8402+84,840=8410+0,所以840与1764的最大公约数就是84。
(2)用更相减损术求440与556的最大公约数。
556-440=116,440-116=324,324-116=208,208-116=92,116-92=24,92-24=68,
68-24=44,44-24=20,24-20=4,20-4=16,16-4=12,12-4=8,8-4=4。
440与556的最大公约数是4。20.已知二次函数f(x)=ax2+ax﹣2b,其图象过点(2,﹣4),且f′(1)=﹣3.(Ⅰ)求a,b的值;(Ⅱ)设函数h(x)=xlnx+f(x),求曲线h(x)在x=1处的切线方程.参考答案:【考点】利用导数研究曲线上某点切线方程;导数的运算.【专题】方程思想;分析法;导数的概念及应用.【分析】(Ⅰ)由题意可得f(2)=﹣4,代入f(x)解析式,求出f(x)的导数,代入x=1,解方程可得a=b=﹣1;(Ⅱ)求出h(x)的解析式,求得导数,可得切线的斜率,再由点斜式方程可得切线的方程.【解答】解:(Ⅰ)由题意可得f(2)=﹣4,即为4a+2a﹣2b=﹣4,又f′(x)=2ax+a,可得f′(1)=3a=﹣3,解方程可得a=b=﹣1;(Ⅱ)函数h(x)=xlnx+f(x)=xlnx﹣x2﹣x+2,导数h′(x)=lnx+1﹣2x﹣1=lnx﹣2x,即有曲线h(x)在x=1处的切线斜率为ln1﹣2=﹣2,切点为(1,0),则曲线h(x)在x=1处的切线方程为y﹣0=﹣2(x﹣1),即为2x+y﹣2=0.【点评】本题主要考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和运用直线方程的点斜式方程是解题的关键.21.(本小题满分9分)已知集合A={x|1<ax<2},集合B={x||x|<1}.当AB时,求a的取值范围.参考答案:试题分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- UMO安全操控理论培训课件
- 2025年电力电子试卷及答案
- 数学考查试题及答案
- Storyline课件导入失败
- signs课件教学课件
- SDS凝胶电泳课件
- QC方针管理课件
- 2025年内坑驾照考试试题及答案
- 三年级下册数学期末试卷及答案
- 2025年小学2年级试卷及答案
- 二级豆粕创新创业项目商业计划书
- (统编2025版)道德与法治一年级上册教学计划(新教材)
- 2025云南昆明巫家坝建设发展有限责任公司招聘23人笔试备考题库及答案解析
- 2025年电气工程师高级专业考试题库
- 2024年山东省节能与双碳促进中心招聘真题
- 2025-2026学年统编版小学语文四年级上册教学计划及进度表
- 高二奋发+勇攀高峰+课件-2025-2026学年高二上学期开学第一课主题班会
- 共用水电费分割单模板
- 《阿房宫赋》全篇覆盖理解性默写
- 学校体育学(第三版)ppt全套教学课件
- 住建部《建筑业10项新技术(2017版)》解读培训课件
评论
0/150
提交评论