




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市湾井镇中学2022年高三数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=x B.y=lgx C.y=2x D.y=参考答案:D【考点】对数函数的定义域;对数函数的值域与最值.【分析】分别求出各个函数的定义域和值域,比较后可得答案.【解答】解:函数y=10lgx的定义域和值域均为(0,+∞),函数y=x的定义域和值域均为R,不满足要求;函数y=lgx的定义域为(0,+∞),值域为R,不满足要求;函数y=2x的定义域为R,值域为R(0,+∞),不满足要求;函数y=的定义域和值域均为(0,+∞),满足要求;故选:D2.三棱锥P﹣ABC的四个顶点都在半径为5的球面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为(
)A.7 B.7.5 C.8 D.9参考答案:C【考点】球内接多面体.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】由小圆面积为16π,可以得小圆的半径;由图知三棱锥高的最大值应过球心,故可以作出解答.【解答】解:设小圆半径为r,则πr2=16π,∴r=4.显然,当三棱锥的高过球心O时,取得最大值;由OO1==3,∴高PO1=PO+OO1=5+3=8.故选C.【点评】本题考查了由圆的面积求半径,以及勾股定理的应用,是基础题.3.(5分)正项等比数列{an}中,a1a5+2a3a6+a1a11=16,则a3+a6的值为()A.3B.4C.5D.6参考答案:B【考点】:等比数列的性质.【专题】:计算题.【分析】:根据等比中项的性质可知a1a5=a23,a1a11=a26,代入题设条件中求得(a3+a6)2=16,进而求得答案.解:根据等比中项的性质可知a1a5=a23,a1a11=a26,∴a1a5+2a3a6+a1a11=a23+2a3a6+a26=(a3+a6)2=16∵a3+a6>0∴a3+a6=4故选B【点评】:本题主要考查了等比数列中等比中项的性质.属基础题.4.设,则的值为(
)(A)
(B)
(C)
(D)参考答案:5.已知抛物线的焦点为,准线为,过点斜率为的直线与抛物线交于点(在轴的上方),过作于点,连接交抛物线于点,则(
)A.2
B.
C.1
D.参考答案:A6.设曲线C的方程为(x-2)2+(y+1)2=9,直线l的方程x-3y+2=0,则曲线上的点到直线l的距离为的点的个数为(
)A、1B、2C、3D、4参考答案:7.某几何体的三视图(如图),则该几何体的体积是 A.
B.
C.
D.
参考答案:B8.已知函数(其中)的部分图象如下图所示,为了得到的图象,则只需将的图象
(
)A.向右平移个长度单位B.向左平移个长度单位C.向右平移个长度单位D.向左平移个长度单位
参考答案:A9.为了得到函数的图像,只需把函数的图像上所有点(
)
A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)
B.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)
C.先把所得各点的横坐标缩短到原来的倍(纵坐标不变),再向左平移个单位长度
D.先把所得各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位长度参考答案:D10.如果函数f(x)=(﹣∞<x<+∞),那么函数f(x)是()A.奇函数,且在(﹣∞,0)上是增函数B.偶函数,且在(﹣∞,0)上是减函数C.奇函数,且在(0,+∞)上是增函数D.偶函数,且在(0,+∞)上是减函数参考答案:D【考点】3K:函数奇偶性的判断;3E:函数单调性的判断与证明.【分析】定义域为R,关于原点对称,计算f(﹣x),与f(x)比较,即可得到奇偶性,讨论x>0,x<0,运用指数函数的单调性,即可得到结论.【解答】解:定义域为R,关于原点对称,f(﹣x)==f(x),则为偶函数,当x>0时,y=()x为减函数,则x<0时,则为增函数,故选D.二、填空题:本大题共7小题,每小题4分,共28分11.当点(x,y)在直线x+3y=2上移动时,z=3x+27y+3的最小值是
.参考答案:9【考点】基本不等式.【专题】不等式的解法及应用.【分析】利用基本不等式的性质、指数的运算法则即可得出.【解答】解:∵点(x,y)在直线x+3y=2上移动,∴x+3y=2,∴z=3x+27y+3≥+3=+3=+3=9,当且仅当x=3y=1时取等号.其最小值是9.故答案为:9.【点评】本题考查了基本不等式的性质、指数的运算法则,属于基础题.12.一个盒子中放有大小相同的4个白球和1个黑球,从中任取两个球,则所取的两个球不同色的概率为_______.参考答案:【分析】列举出任取两个球所有可能的结果,找到两个球不同色的所有情况,根据古典概型求得结果.【详解】设个白球编号为:;个黑球为:从中任取两个球的所有可能结果为:、、、、、、、、、,共种所取的两个球不同色的有:、、、,共种所求概率为:本题正确结果:【点睛】本题考查古典概型的概率问题的求解,考查列举法的应用,属于基础题.13.已知幂函数的图象经过点(3,),那么这个幂函数的解析式为
参考答案:14.已知函数是定义在上的奇函数,则
.参考答案:ln3由定积分的运算性质可得.∵函数是定义在上的奇函数,∴.又.∴.
15.等比数列{an}的前n项和为Sn,若S2n=3(a1+a3+…+a2n-1),a1a2a3=8,则a10等于________.参考答案:51216.已知函数则不等式的解集是
.参考答案:()略17.(1+2x2)(x﹣)8的展开式中常数项为.参考答案:﹣42【考点】二项式定理的应用.【分析】将问题转化成的常数项及含x﹣2的项,利用二项展开式的通项公式求出第r+1项,令x的指数为0,﹣2求出常数项及含x﹣2的项,进而相加可得答案.【解答】解:先求的展开式中常数项以及含x﹣2的项;由8﹣2r=0得r=4,由8﹣2r=﹣2得r=5;即的展开式中常数项为C84,含x﹣2的项为C85(﹣1)5x﹣2∴的展开式中常数项为C84﹣2C85=﹣42故答案为﹣42三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分l2分)已知函数(1)若,求函数的极小值;(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?参考答案:解:(I)由已知得,
xk.Com]则当时,可得函数在上是减函数,当时,可得函数在上是增函数,
故函数的极小值为;(Ⅱ)若存在,设,则对于某一实数,方程在上有三个不同的实数根,设,则有两个不同的零点,即关于的方程有两个不同的解,则,设,则,故在上单调递增,则当时,即,又,则故在上是增函数,则至多只有一个解,故不存。方法二:关于方程的解,当时,由方法一知,此时方程无解;当时,可以证明是增函数,此方程最多有一个解,故不存在。略19.(本小题满分12分)已知函数(1)求函数的单调区间;(2)当时,,求实数的取值范围。参考答案:【知识点】利用导数研究函数的单调性;函数零点的判定定理.B9B12(1)见解析;(2)解析:(1),令当单增,单减(2)令,即恒成立,而,令在上单调递增,,当时,在上单调递增,,符合题意;当时,在上单调递减,,与题意不合;当时,为一个单调递增的函数,而,由零点存在性定理,必存在一个零点,使得,当时,从而在上单调递减,从而,与题意不合,综上所述:的取值范围为【思路点拨】(1)f′(x)=exsinx+excosx=ex,分别解出f′(x)>0,f′(x)<0,即可得出单调区间;(2)令g(x)=f(x)﹣kx=exsinx﹣kx,即g(x)≥0恒成立,而g′(x)=ex(sinx+cosx)﹣k,令h(x)=ex(sinx+cosx),利用导数研究函数h(x)的单调性可得:在上单调递增,,对k分类讨论,即可得出函数g(x)的单调性,进而得出k的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分。20.(本题满分12分)已知函数(Ⅰ)用五点作图法,作出函数上的简图;(Ⅱ)若,,求的值;参考答案:(Ⅰ)(Ⅱ)21.设为常数)(1)当时,求的最小值;(2)求所有使的值域
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 责任临床经验课件
- 2025版电子产品销售代理权转让及售后服务合同
- 2025保安公司专业巡逻外包服务合同
- 2025储油罐租赁合同:智慧储油罐租赁及智能监控系统协议
- 2025崇明危化品运输合同运输工具维护与保养服务范本
- 2025版全新网络安全检测企业员工保密协议与网络安全技术保护合同模板下载
- 2025彩钢装饰工程设计与施工一体化合同样本
- 2025版二手房买卖合同汇编:合同标的、租赁与转租条款解析
- 2025年防护栏新材料研发与应用合作合同
- 2025年度专业保安服务合同标准模板
- DBJ46-070-2024 海南省民用建筑外门窗工程技术标准
- GB/T 44621-2024粮油检验GC/MS法测定3-氯丙醇脂肪酸酯和缩水甘油脂肪酸酯
- 校园天眼平台建设方案
- 餐饮加盟协议合同书
- 事业单位招聘综合类必看考点《管理常识》试题解析(2023年)
- T CEC站用低压交流电源系统剩余电流监测装置技术规范
- 办理宽带拆机委托书
- JJG 677-2006光干涉式甲烷测定仪
- 2024建筑工程监理表
- 胸部肿瘤放疗讲课
- 空乘服务语言艺术与播音技巧全套教学课件
评论
0/150
提交评论