版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1引言 21.供应链计划变革的现状 3 31.2供应链计划变革的现状 41.3解决当前和未来的供应链计划挑战 5 51.5Gartner2023年供应链预测 61.6中国制造企业采用SCP的现状 62.供应链计划的某些未来趋势 82.1用新兴数字技术解锁供应链计划的未来趋势 82.2供应链计划软件市场及投资趋势 82.3中国供应链计划投资现状及趋势,和市场份额 92.4如何选择有效的供应链计划解决方案 113.供应链计划技术发展周期 3.1Gartner2021年供应链计划技术发展周期 3.2部分供应链计划技术的定义和分析 4.供应链计划技术的未来若干发展趋势 4.1概率预测和概率计划 4.2人工智能驱动的供应链计划 314.3以决策为中心的计划 314.4协同供应链云平台将出现 4.5将可持续发展理念融入集成供应链计划 4.6智能供应链计划 5.总结 6.参考文献 7.罗戈研究 2计划是企业供应链管理的核心职能,也是企业的核心竞争能力之一",并从多个维度阐述了2019年10月发布的Gartner供应链计划技术发展周期,并介绍了若干新的SCP解决方案,者能看到的2020年11月发布的Gartner2021供应链计划技术发展周期研究报告;最后一3关于分析智能制造现状的研究报告【2】【3】。其中特别是《2022年智能一供应链计划专辑》【2】调查了321家制造商目前如何管理供应链计划,以及未来如何管●智能制造采用率同比增长50%;●60%的公司现在要么使用完全集成的解决方●到2022年底,75%的组织将采用智能制造的一些组件。关键技术(系统和体系)描述企业资源计划(ERP)自动化前台和后台流程,包括财务管理、收入管理、人力资本、跟踪并记录原材料向成品的转化,提供实时生产管理,以推动企业范围内的合规性、质量和效率。质量管理体系(QMS)使质量文件、过程和测量标准化并实现自动化。供应链计划(SCP)将来自业务中多个部门的数据相结合,以同步需求和供应预测,从而提高库存准确性和生产管理。生产监控(PM)提供了与车间机器的无缝连接,提供了透明、实时的运营KPI和仪表盘,以推动持续改进。资产性能管理(APM)通过仪表板将流程、运营和机器级数据结合起来,以监控机器和工厂的运行状况,确保最佳的正常运行时间、吞吐量和维护需求。将您的MES连接到工厂边缘,以控制信息流、流程和工作中心设 4虽然人们对智能制造的各个方面都有类似的期望,但生产监控和供应链计划被列为组织成功运营所需的“关键技术组件”【2】。图1描述了智能制造关键任务解决方案排名,供应链计划被认为是实现智能制造第二重要的关键技术,这说明了供应链计划的重要性。像这样的解决方案可以快速实现价值,并有助于为制造执行系统(MES)和/或企业资源计划(ERP)的实施奠定基础。模块化技术使逐步采用解决方案并快速实现价值成为可能。例如,典型的供应链计划解决方案只需要四个月的实施时间。 图1:智能制造关键任务解决方案排名(来源:Plex【2】)1.2供应链计划变革的现状根据【2】,尽管人们日益认识到供应链计划技术对于智能制造的重要性,并且现代供应链计划技术的采用率似乎在攀升;然而,在动荡时期,组织快速反应和无缝机动的能力仍然滞后。传统的供应链计划技术仍占上风。图2展示了供应链计划变革的基本现状:图2:供应链计划变革的基本现状(来源:Plex【2】) 5图3显示了供应链计划解决方案的采用率提高趋势,但重要的是要评估当前的解决方案是否考虑到了未来日益复杂的供应链。下一节读者将看到为应对越来越不确定的环境和不断增进复杂性的供应链,企业需要更智能数字化的端到端的解决方案。30%2017年的受78%2022年的受访图3:供应链计划解决方案的采用率提高趋势(来源:Plex【2】)【2】的研究表明企业采用更先进的应链计划解决方案仍存在许多障碍(见图4)。其中成本被认为是采用供应链计划软件解决方案的最大障碍。然而,正如过去一年的头条新闻所显示的那样,许多公司承担了运输成本加快、生产延迟和客户满意度下降的负担,这可能远远超过系统实施的成本。图4;采用供应链计划软件解决方案的障碍(来源:Plex【2】)CoastalAutomotive一家具有前瞻性的汽车安全零部件制造商的物料经理杰夫·本德指出:在采用PlexSystems基于云的供应链计划解决方案之前,我们经常面临高估库存和客户发货不足的风险,或者低估库存和不必要地生产更多产品的风险。现在我们得到了准确的库存,这对我们的利润产生了巨大影响。这个案例说明采用数字化的供应链计划解决方案将给企业带来价值和成长。因此企业应当从战略的角度来设法克服上述的障碍,尽快采用数字化的供应链计划解决方案和技术。1.4缺乏完整的供应链解决方案2023年3月美国罗克韦尔自动化PLEX发布了《第八届智能制造年度状况报告》【3】,它是基于一项针对1350多家制造商的全球调查。该报告指出:尽管近年来受到供应链中断的影响,但五分之四的制造商缺乏端到端的供应链计划。端到端软件解决方案旨在解决制造商面临的问题,例如在管理供应链中的冗余和弹性的同时降低成本——他们通过结合销售和运营计划来做到这一点,同时提高可见性和控制力。零散的解决方案通常不包含足够的投入来进行准确的计划和预测。 6调查发现:50%的参与者要么没有使用供应链计划流程,要么使用手动工具(即电子表格)或自主开发的解决方案,这给公司带来了巨大的IT负担,并带来了过时的风险。那些没有端到端数字供应链解决方案的人所面临的可见性不足将被证明是有问题的,尤其是面对来自监管机构日益增长的压力(如ESG),以及大客户的审计需求(如产品碳排放),这些需求现在需要跟踪和可追溯性的透明度。79%的制造商缺乏端到端供应链计划图5:采用端到端供应链计划软件现状(来源:Plex【3】)近几年来全球供应链面临压力,制造商面临着提高整个组织和供应链弹性的压力。高能源成本、零部件短缺和资源问题已经阻碍了对市场波动的快速反应。这种波动被Gartner定义为"三重挤压"——全球供应链限制、劳动力市场短缺和通货膨胀——所有这些都对制造商产生巨大影响。Gartner在【4】中做出了2023年供应链预测,其中关于未来3年的四个战略计划假设指出:●到2025年,五分之三的智能工厂计划将因缺乏供应链整合而失败,从而导致严重的成本限制和客户服务问题。●到2026年,供应链区域化工作将使制造商采购、生产和运输产品所需的时间减少一半以上。●到2025年,超过80%的制造商将部分或全部生产流程外包给外部制造商,而2022●到2025年,至少25%的制造运营应用程序将使用可组合技术架构,高于2022年的有趣的是第一条预测,有60%的失败率!这几乎是太悲观的估计。然而一般比较科学的预测大多基于历史和现状,特别是现状。纵观本文前面指出的50%以上智能制造商仍使用传统的供应链计划方法,79%的制造商缺乏使用端到端的供应链计划软件,看来Gartner的这个预测是基本上可信的估计。实际上这条预测也可看作是对正在向智能制造转型的制造商的一个警示,希望它们同时实施智能制造和数字化供应链的双转型,从而通过整合而达到预期的智能制造的成功。国际数据公司(IDC)和中国顶级SCP软件供应商悠桦林于今年5月发布了《智能供应链计7划白皮书》【5】。该报告总结了中国企业,特别是制造业数字化转型的成熟度(见图6)和供应链计划应用的现状(见图7)。特别是从战略到运营的全局视野,提出了智能供应链计划的框架,以及阐述了供应链计划应用给企业带来的价值,并展望了供应链计划发展的挑战与机遇。图6:制造企业供应链数字化转型成熟度vs中国企业整体数字化转型成熟度(来源:IDC&悠桦林【5】)【5】指出:尽管中国制造企业群体对智能制造表现出了前所未有的积极意向,推进自身数字化和智能化发展,但在供应链这一关键方面,中国的制造企业群体却仍处于早期阶段。根据一项IDC针对制造企业供应链的调研显示,制造企业供应链的数字化转型水平达到复制整合阶段及其以上的仅占比24%,远落后于同阶段整体企业数字化转型水平的56.3%。如图7所示,在未部署“供应链计划”的受访企业中,78%仍处在单点实验阶段,即以单点环节的项目应用为主,即使在已经部署此类解决方案的企业中,处于单点实验阶段的企业占比仍单点实验:局部推广:复制整合:在公司全范围进行供应链数字化转型项目推广管理运营:数字化已经成为公司供应链运行的标配………………优化创新:与业务深度集成,助力业务创新………图7:制造企业供应链数字化转型成熟度(部署vs未部署供应链计划应用)(来源:IDC&悠桦林【5】)中国制造企业在采用供应链计划应用和【2】中给出的调查结果几乎相当(见图2)。但【5】没有指出高级端到端供应链计划应用程序在中国采用的现状。作者认为不会优于【3】给出 8术趋势的文章。它们都指出了采用和适应新的创新技术和技术主题(分组)有助于建立一个研究报告【2】指出:供应链计划的下一个前沿是连接机器数据,以提人工智能和机器学习来改进预测并不是什么新鲜事——天气预报在很大程度上依赖于这项技术。通过在供应链计划中实施机器学习,需求计划中的预测准确率可以提高5-10%,从而【2】列举了为什么要使用云技术的7大好处:●通过远程可访问的数据扩大对熟练劳动力的云技术可带来的业务连续性这一点对于企业非常重要。使用经过验证的多租户云SaaS解决9组织正在认识到智能制造的价值,他们计划的投资选择表明了技术对制造业未来的重要性。供应链计划被列为第二大最受欢迎的投资选择。增长如此之快是不寻常的。显然,尽管现在已经是大流行之后,但它仍然是这个数十亿美元市场增长的驱动力。这场大流行凸显了公司保持敏捷和弹性的必要性。敏捷性和弹性仍然是高级管理人员的关键目标。高管们大多不相信我们将拥有几年前盛行的平稳且可预测的供应链。而供应链计划是实现这些目标的一项关键技术。 .80%这预示着供应链计划将成为未来制造企业数字化能力建设的重要领域之一。"图11:中国制造企业未来两年的数字化技术投资方向(来源:IDC&悠桦林【5】)需求持续释放,同时市场供给的数量和质量双双提会保持较高增长速度。 中国供应链计划及APS解决方案市场份额,2022 悠桦林图12:2022中国供应链计划及APS市场份额(来源:IDC【11】)图12展示了2022中国供应链计划及APS市场份额。【11】指出:从竞争格局来看,BlueYonder、SAP和悠桦林在2022年中国供应链计划及APS解决方案市场排名前三。其中,BlueYonder依靠其在中国市场的良好口碑以及高科技电子行业解决方案的深厚积累,以10.1%的市场份额排名第一;SAP提供从企业资源管理到供应链计划的端到端集成方案,以8.5%的市场份额排名第二;悠桦林基于其运筹学智能算法和扎实的原厂交付团队,在市场中异军突起,以7.6%的市场份额排名第三。汉得信息、美云智数、金蝶、谷斗、微优微科技分列为第四到第八。其他典型服务商如达索系统、杉数科技、数策智能、西门子、和光、09、永凯、第四范式、创新奇智、蓝幸、商简、不工等都在各自领域有不错的表现。尽管如此,我们需要看到中国在SCP应用及创新方面与西方发达国家仍然有较大的差距。根据【5】,中国正在加大力度迎头赶上,这正是可喜的发展趋势。●采用机器学习并生成更好/最优的预测;●连接机器数据,以便以最优化的方式安排和执行该计划。成功执行和通信确保最有效率的增长Themoreinpusyouget.thehigheryourforecastaccuracybecomesAmoreaccuraesuppiyplanimprovesyourexecutionwithacouracybecones.图13:使用机器学习的供应链计划创建了一个不断改进的闭环(来源:Plex【2】)图13展示了使用机器学习的供应链计划创建了一个不断改进的闭环,这正是现代有效的供应链计划解决方案必须具备的功能特征。虽然人们无法阻止供应链中断,但人们可以通过专注于那些人们能控制的事情来减轻一些风险。一个有效的供应链计划解决方案应该快速实施,易于使用,并为企业提供可实现的结果。花更少的时间和更少的努力,而获得更高的回报。 Gartner一直在跟踪研究各种供应链计划解决方案的新兴技术和创新,并且几计划的决策方式。本文作者在【1】中曾介绍了2019年10月发布的2020年Gartner的研究2020年11月12日Gartner发布了2021的供应链计划技术发展周期研究报告。图14是2021SCP是一个成熟的技术市场,但SCP正被数字化、供应链中断和波动等驱动因素重新定义。家公司无法以足够快的速度发展其流程以充分利用新技术。领先的公司正在全力将其SCP●计划新的创新方式为客户服务通过决策自动化●从指数级增长的数据量和类型中开发新的见解和价值(包括利用新的数据源)●在整个供应链生态系统中横向和纵向调整计划决策, 期望期望稳定和成熟的市场。这些创新体现在这个炒作周期中。为了在SCP中拥有竞争优势,公司必须弄清楚如何将这些创新纳入其SCP路线图中——这是炒作周期的左侧(见图14)。那些对新技术采取更规避风险的方法的人应该更多地关注右侧的技术,但要意识到,这对许多行业来说不是竞争优势领域。AsdfNovembr2020C少于2年02-5年●5-10年多于10年进入生产成熟期前消失图14:2020年11月发布的2021供应链计划技术发展周期曲线(来源:Gartner【12】)Gartner的SCP发展周期选择的创新不断被审查,它试图最好地反映那些对未来SCP解决方案具有最大影响的创新。因此,每年都可能有些不适宜者被下线(指发展周期曲线),而一些新兴的创新被添加上线。与2019年10月发布的2020年SCP发展周期曲线(图15)相比,有4项创新被下线(注:它们仍然是某种技术创新,但可能由于评估后被发现不适宜放在●认知计算:一个容易混淆的术语,用于多种不同的能力●分布式订单管理:过于关注执行和零售●供应链融合:过于专注于执行,也包含在CORE中●供应链可视性:记录和供应链控制塔SCP系统的固有特性●数据结构(DataFabric) 期望期望高蜂期●可组合SCP(ComposableSCP)供应链计划技术成熟度曲线,2019年稳步民升的谷期时间图15:2019年10月发布的2020供应链计划技术发展周期曲线(来源:Gartner【1】)图16描述了Gartner定义的2021供应链计划技术优先级矩阵【12】。该矩阵根据SCP在该战略中的角色和成熟度级别的需求对投资进行优先排序,它有助于企业在考虑SCP投资时,将潜在投资与其整体供应链战略联系起来。【12】指出:处于计划成熟度最低水平的公司将使用和获取已经退出这一炒作周期右侧的技术,如基本需求计划、补货计划和基于ERP的计划。寻求计划决策质量(第二阶段成熟度)增量改进的公司将主要关注这个炒作周期的右侧。那些希望整合其计划的人应该考虑Hype周期中间的能力。领先的公司应该在数字供应链孪生、弹性计划和可组合SCP等领域试验左侧的技术。为SCP提供中等或高商业效益的技术,可能在未来两到五年内趋于平稳,主要集中在传统SCP上。这些例子包括需求感知和需求信号库、数据湖、多级库存优化和优化计划。对分段SCP的支持以及整个供应链中大数据的使用和处理速度也有助于其中一些解决方案的实用性。这些技术的应用可以通过使用更多的决策级数据和高级分析来启动计划决策性质的改变。通过应用自动化预测和规定分析(Al/ML),预计在5至10年内趋于平稳的技术将提高和转变计划决策质量。近实时计划决策和执行可见性(CORE)的融合是通过数字供应链孪生实 现的,例如响应计划、机器学习和物联网。最终,这些各种新兴的SCP技术将结合成Gartner所称的算法SCP(也可能在本质上是可组合的),并最终实现新的计划范式,如弹性计划。这个炒作周期左侧所代表的大多数技术代表了下一代SCP的关键构建块,例如,数字供应链●收益维度,包括变革,高,中和低4级;●成为主流的时间维度,包括少于2年,2~5年,5~10年,和超过10年;●一个隐含的SCP技术成熟度维度,包括在下面的表中。大量定制更少的定制几个主要供应商维护收入重点很少使用 高高中低供应链计划技术优先级矩阵,2020年收益成为主流的时间物联网数据结构图形分析SCP机器学习算法供应链计划数字供应链计划弹性计划自动化机器学习连续计划需求信号存储库长期需求感知多级库存优化网络设计短期需求感知供应计划自动化计划配置计划可盈利承诺交期响应计划数据湖自然语言生成图16:2020年11月发布的2021供应链计划技术优先级矩阵(来源:Gartner【12】)Gartner有名的分析师TimPayne,ChristianTitze等对所有列举在矩阵图16中的技术做了标准分析,该分析包括技术的定义和分析,以及其市场热度和成熟度。下面将以表格的形式介绍部分供应链计划技术的定义和分析。3.2.1数字供应链孪生数字供应链孪生数字供应链孪生是物理供应链的数字表示,可用于推动整个E2E供应链的理解和决策。它逐渐取代了任何E2E供应链决策解决方案的核心供应链模型。它是由细粒度数据构建的,以形成数据对象和实体之间各种关联的动态、同步、实时和分时表示,这些关联最终描述并构成物理供应链的运作方式。随着数字业务的出现以及数字供应链的发展,数字供应链孪生在过去几年才进入公司的词汇表,以促进协调和自动化。数字供应链孪生是供应链的数字表示,本质上是企业或多企业。单个节点(例如仓库)或功能(例如分销)的数字表示不是数字供应链孪生,因为这两种类型都不代表其决策的E2E供应链。公司开始认识到拥有E2E供应链单一数字表示的重要性。对于希望建立数字供应链孪生的组织来说,技术选择尚不明确。一些SCP供应商正在将其单一数据模型重命名为数字供应链孪生,而其他供应商则试图使这些单一数据模型更能反映现实。一些知名然而,在许多情况下,这些模型仍然主要使用过时和静态的事务数据。来自大数据和人工智能背景的供应链市场新进入者开始出现在数字供应链孪生环境中,但这些产品也处于萌芽状态。公司改善供应链决策的关键目标是减少在整个E2E供应链中使用的模型数量。拥有一个以上的模型会降低任何E2E决策的质量。理想的情况是找到一个完全一致并支持高质量决策的单一模型。组织应该将数字孪生应用于从战略到执行的供应链决策的各个层面。适当的预测和规定性分析,包括机器学习(ML)和人工智能(AI),应该应用于数字供应链孪生,从而能够做出一致的(在不同程度上是自动的)决策。通过更真实地反映现实世界的物理供应链,这些决策将更快、更高质量。●检查早期机会,将类似数字供应链孪生的功能(例如,预测交付周期和吞吐率)添加到您现有的技术环境中。最有可能的是,这将涉及将新能力与现有供应链可见性和/或计划和/或执行解决方案配对。或走出通常的技术提供商,以获得这种能力。随着时间的推移,随着您能够利用来自内部和外部供应链不同部分的更精细的数据,可以扩大直接从数据中派生的数字孪生的范围。最后,认识到数字供应链孪生正在出现,但仍理解初浅。DSCT的影响是变革性的,因为它通过与现实世界的供应链保持同步来实现端到端的决策。因此,数字供应链孪生是任何数字供应链努力的核心。正是通过这对孪生,一家公司才能在整个供应链中推动其横向和纵向决策的一致性。这种一致性是显著改进决策和相关业务价值的关键。它通过映射不同数据对象(如事件、属性、订单)和实体(如产品、客户、供应商、地点、资产)之间的关系,确保整个供应链的平衡和整个组织的战略执行。通过与现实世界的联系,大大增强了态势感知、供应链决策和风险管理。它支持决定如何改变其中的一些关系,例如,通过供应链中的替代路线推送订单或建立新仓库。其中一些决策可以完全自动化(通常是短期决策)。最终,它通过与现实世界的供应链保持同步,创造了端到端的可见性,并支持端到端决策。通过这种与现实世界的联系,大大增强了态势感知、供应链决策和风险管理。此外,数字孪生提供了所有现有和新的预测和规定分析运行的基础,使其全部价值能够由组织实现。bluecrux;CosmoTech;DCbrain;eccenca;E2open;o9Solutions;r4CORE框架将SCP技术分为三大类——配置、优化或响应——与执行可见性有很强的联系。配置计划决定了供应链的正确配置。优化计划可生成一个计划,该计划可在当前配置下最佳利用受约束的资源。响应计划认识到执行不太可能遵循最佳计划,并且需要以使公司尽可能接近公司目标的方式对这些执行事件做出响CORE模型引起SCP专业人士的共鸣,是解释所需不同计划能力的好方法。它有助于解释如何通过一个组织垂直整合横向计划层。然而,市场上没有SCP供应商能够覆盖CORE中的所有计划层,这意味着一家公司需要将不同供应商的技术混合在一起。随着SCP供应商根据CORE建立其计划能力,这种情况可能会在未来几年发生变化。他们看到了来自市场的更多吸引力,即最终用户想要统一解决方案中CORE模型所描述的功能类型。●更多数字化计划技术的出现将加速CORE的发展,使其成为公司的现实。制定SCP技术路线图的公司,尤其是具有强大数字元素的公司,应确保三个关键计划层充分利用CORE等框架。此外,CORE是从传统的“注重准确性、确定性”计划向弹性计划和弹性转变的基本要求。审计现有的SCP技术资产,以更好地了解每个CORE层当前的覆盖范围。将当前SCP技术前景与关键SCP计划(尤其是任何数字计划要求)进行比较,并找出差距。创建一个高级SCP技术路线图,突出哪些CORE技术是或将是支持未来状态SCP业务能力成熟度级别所必需的。通过与数字SCP路线图中要求的水平和垂直决策一致程度相匹配,将计划核心的演变与任何数字计划目标联系起来。拥有强大的CORE是帮助公司走向数字化计划成熟之旅的关键。如果一家公司的技术与CORE框架相匹配,这将确保计划决策的横向和纵向一致。它确保公司通过这种与E层和其他CORE层的“执行可见性”相关的调整来降低其做出的混乱计划决策的水平。E层进一步有助于减少计划使用的数据的延迟。R层有助于确保正确的计划分析可用于获取E层数据并与之一起运行——创建场景,为如何应对重大执行事件提供最佳决策。E层还允许接收来自商业网络和物联网传感器等的细粒度数据。然后,这些数据可用于R、O和C层,以便做出适当的计划决策。高目标受众的5%至20%青少年供应链控制塔控制塔是一个将人员、流程、数据和组织能力相结合的概念,通术元素来促进和支持,以实现透明度和协调性。它是关于制应的剧本:(1)看——使人们能够看到当前和预测的情况;(2)过程——理解影响;(3)行动——在商业生态系统中提供适当解决方案的手段。“控制塔”一词对许多人来说仍然意味着很多事情,这在市场上造成了混明乱,并使买家很难根据自己的需求选择合适的控制塔类型的功能。基本的控制塔型技术支持功能,如异常警报和交互式仪表板,以支持产能短缺、库存短缺或延迟发货等领域,现在是现代SCM解决方案的基础和相当标准的功能。然而,影响分析、场景模拟或协作解决/响应室等高级功能落后。目前大多数可用的解决方案都是特定领域的,在供应链计划或供应链执行中发挥特定作用(如物流控制塔),而不是支持供应链融合的供应链端到端解决方案。它们的可操作性也较低,主要提供可视化功能(端到端数据驱动的见解),但与协作解决(端到端智能决策)无关。我们将控制塔定位在触发/峰值中点附近,正如我们所说的端到端,但特定领域的控制塔更成熟(峰值/波谷中点附近)。您需要的是端到端的见解和编排,这是一个数字孪生,以便进行影响分析和场景建模,并进行协作以实现智能问题解没有改变的是:控制塔类型的应用要求或功能没有标准,这使得买家评估供应商产品和确定潜在需求变得越来越困难。因此,对于供应链技术领导者来说,无论术语如何,都必须同时对底层能力建立全面的理解,以帮助消除任何困惑和误解。有不同类型的产品作为控制塔解决方案进行营销。这些是控制塔类型的功能,作为更广泛的供应链管理平台(服务于供应链计划[SCP]或供应链执行[SCE])的集成部分,或者是利用数据湖上的智能的独立工具。●为了获得大多数解决方案营销的全面可见性,公司需要注意,他们需要在旅程中计划出一个端到端的控制塔,而不是一个功能更强大的供应链方法。他们还需要提高非技术能力,如过程管理和决策能力,以支持控制塔环境。熟悉控制塔的概念、构建块和预期好处,以便与同行正确沟通其价值。在供应链流程、范围或技术成熟时,投资控制塔能力。根据您的用例选择合适的解决方案。控制塔之所以广受欢迎,是因为它们在市场上被视为将复杂和孤立的供应链缝合在一起,并且它们正在获得对供应链性能的可见性和洞察力。这一切都是为了获得更多的透明度(我高度波动的供应链中发生了什么)和协调(连接到控制塔不会取代的不同层)。因此,控制塔可以作为切入点,做出更好、更快的决策。控制塔捕获端到端、数据驱动的见解,用于设计和优化供应链,以及管理端到端异常,从而在商业生态系统中实现智能的端到端决策。这可以映射到以下所需的详细活动:感知(请参阅):获得实时、端到端的供应链可见性分析(流程):了解并利用数字生态系统的信号预测(项目):利用高级分析进行预测和处方学习(Learn):不断学习、感知和回应。高注:本文作者对数字供应链控制塔技术发表了一系列研究文章和报告,读者可参看【1,19-24】。当数字供应链控制塔发展到其高级阶段,它都应包括支持现代SCP技术,例如BlueYonder。E2open和OneNetworkEnterprises的控制塔。弹性计划是指准确、可执行的短期计划,由中期和长期计设计和利用适当程度的弹性来缓解不确定性。为了实现弹划范式、超大规模云平台、Al/ML、数字供应链孪生和遵循CORE框架相结合。对大多数公司来说,供应链计划本质上是确定性的,尤其是在供应方面。计划从根本上讲仍然基于近60年的计划范式,该范式包括预测需求,然后不断向供应链传播这一信号。这种范式最初被封装在20世纪60年代初首次出现的材料需求计划(MRP)算法中。这种计划模式的整个前提是试图为供应链创建一个准确的计划,然后可以执行——希望如此。如果有准确的需求计划、物料清单、交付周期和产能水平,则可以准确计算上游供应计划。这里的假设是,如果有一个准确的计划,那么工厂、配送中心甚至供应链都可以执行这个计划,从而实现原始计划中固有的目标。然而,有一个问题,不确定性。或者,正如一句古老的军事谚语所说,“没有一个计划能在与敌人的第一次接触中幸存下来。”随着新技术(超大规模云、Al/ML、数字供应链孪生)与新的计划框架(如CORE)和新的计划范式的结合,公司可以重新构想其计划方法,并考虑弹性计划。弹性计划的实现将是缓慢的。太多的供应链仍然拘泥于计划准确性(尤其是预测)的理念,无法认真进行弹性计划。尽管所需的技术正在不断成熟,但要充分实现弹性计划,仍有很多工作要做。然而,由于新冠肺炎的爆发,围绕弹性计划和供应链弹性的炒作大幅增加(因此,在今年的hype周期中,弹性计划得到了推进)。不幸的是,在未来几年里,很少有公司能在供应链中实现真正的弹性。要实现弹性计划,公司需要将多种技术结合在一起(以及解决公司文化问题):●增加ML的使用,以逐步从未知的不确定性转变为供应链中实体、属性和参数方面的已知可变性。利用ML进行更便宜、更广泛、更快的预测。使用它可以创建多个计划(更具概率性),而不仅仅是一个确定性计划。或GoogleCloudPlatform等超大规模云提供所需级别的可扩展性。●通过使用强大的数字供应链孪生,实现计划层之间的正确相互作用,以减少不确定性,并准确执行计划。●构建SCP技术路线图,以封装CORE模型的各层。所有这些决策层都需要支持全面的弹性计划。每个人都有自己的角色——没有一个是可以忽略的。●将计划模式从只关注准确性转变为弹性/准确性平衡。这就是响应计划的准确性和优化和配置计划的弹性。一旦所有新兴技术都得到充分利用,对计划准确性的遵守被打破,弹性计划代表了未来的计划模式,尤其是对于优化和配置计划层。●应用这些新兴技术,传统的准确性计划模式可以带来好处,但这并不能代表这些技术在决策环境中的全部和真正价值。公司的供应链环境将继续增加不确定性和波动性。领导人将在这种情况下寻求更好的管理方式,并最终转向弹性计划。对他们来说,好处将是在竞争激烈的数字世界中保持竞争对手的优势。不到目标受众的1%bluecruxCAMELOTManag算法供应链计划算法供应链计划通过利用所有类别供应链计划(SCP)的多个数据源,概括了复杂数学算法的工业应用,以推动速度、规模和改进决策,以及适当的决策自动化。这些算法有助于封装遗传(过往的经验等)、行为、决策以及供应链对当前和新兴环境刺激的反应。传统的、以最佳实践为中心的、手动密集型的、以人为中心的协作计划不足以从庞大的数量中获得最大的业务价值,在扩展的企业业务网络和相关连接中生成的数据(包括内部、外部、网络化、结构化、非结构化、实时和物联网数据)的粒度和速度。竞争优势将取决于对环境信号的理解速度和自适应响应,以利用数据可见性、高级分析、人工智能和决策自动化实现企业目标。这需要重新思考计划;它必须变得以决策为中心,自动化,不再是一个独立的领域,而是更多地集成在供应链的执行领域中。计划决策将每天进行多次——越来越接近实时——根据实际执行情况进行自适应。算法将实现持续计划,尤其是在短期内。数字供应链可能会引发新的颠覆性事件,因果关系尚不清楚。算法计划需要通过支持适当的分析和最终成为良好或最佳实践的“紧急”实践的后续演变来应对这些事件。算法支持的实验将是实现这一举措的关键能力。目前没有供应商支持完整的算法计划。2020年,人们对这一概念的兴趣有所增长,因为它被视为支持高成熟度数字计划所需的技术。完整的算法计划代表了第五阶段计划技术的成熟度。为了从不断增长的数据中获得价值,SCP领导者需要在“有意识”和“潜意识”计划之间找到正确的平衡——即不同计划决策可以成功自动化的时间点和程度。SCP领导人需要确定在哪里实施算法是有意义的,并在做出此类决策时非常慎重。这涉及到确定哪些活动对业务最重要,以及在哪里部署算法计划方法是有意义的。这些可能包括:有太多计划者支持一项活动的计划决策,这意味着新兴的算法SCP将允许公司将计划者转移到更多增值的活动中。从挖掘新的因果关系的实验方法中受益的计划决策(例如结合新数据源的影响来改进特定的计划决策)。接近执行的计划决策,在本质上可能变得更加接近实时,并且完全自 检查您公司的数字供应链计划,以开始识别可以通过适当的SCP算法利用的相关数据。回顾您的SCP路线图,以确定快速算法计划的胜利——关注自动化、减少偏见和提高速度的机会。投资于培训和开发,使计划者具备管理(甚至创建)算法的适当技能,从而腾出时间将重点转移到其他增值活动上(从记录系统计划者转移到创新系统计划者)。根据Gartner配置、优化、响应和执行(CORE)模型审核您当前的SCP能力——重点关注每一层所需算法的类型和范围。SCP战略相结合,以利用预测和规定算法来支持集成的端到端计划,并利用基于分析的实验技术来推动对复杂供应链计划挑战的共同理解。●将您的算法计划方法与其他数字计划举措相结合,因为它们必须相互支持。业务影响:在部署算法计划时,公司可以从以人为中心的传统计划转变为以结果为中心的决策计划。流程和组织结构将发生变化,以促进这一转变。计划者将通过管理算法和相关业务规则本身,从根据具体情况接受计划或场景的明确责任转变为隐含责任。更多的决策将转向自动化预测和处方(也称为自主计划)。计划方法将从以人为中心的批量、顺序、稳态、聚合、过时和手动状态转变为以决策为中心的连续、智能、自学习、实时和自动状态。目标受众的1%至5%NetworkEnterprises;Solvoyo;ToolsGroup;Veki注:Gartner最早于2016年在供应链执行会上提出了算法供应链计划这一新兴技术的趋势和概念。在此Gartner供应链执行会议上,两位Gartner分析师演讲描述了算法对供应链计划的影响,并以三个ToolsGroup客户为例。MichaelBurkett介绍了《2025年供应链:计划未来3.2.6长期需求感应长期需求感知(LT-DS)提供综合业务计划,并支持两年到五年以上的长期计划。LTDS的目的是考虑宏观经济因素(如GDP、通货膨胀)、领先指标和长期因果影响因素的影响,预测公司产品或服务的未来市场需求趋势。LTDS利用机器学习和多个外部数据集来预测市场需求水平。随着公司在综合业务计划过程中延长时间范围,他们将需要对领先的长期需求指标进行建模。SCP和分析软件市场正在开始部署为LTDS提供支持的功能。这类软件的市场吸引力仍然很低,但随着许多公司因当前和未来高度动荡的市场条件而更加迫切地需要增加其计划范围,市场吸引力正在增随着现有SCP供应商继续在Al、ML和高级分析方面进行投资,他们将增强其IBP/S&OP产品,包括对LTDS的更全面支持。SCP市场的新进入者专注于Al/ML,大数据也将进入这一领域。然而,为了取得成功,供应商需要同时拥有分析和必要的外部数据来帮助他们的客户用户建议:为了利用新兴的LTDS解决方案,公司应该:●拥有强大的配置计划能力,使他们能够在长期内对端到端供应链进行建模。●获取代表影响因素的相关数据流,这些数据流将为其长期市场需求提供适当的见解。拥有成熟的销售和运营计划流程,在IBP的推动下制定长期计划。评估供应商的LTDS能力。可能有必要从不同于您的主要SCP供应商的供应商处采购LTDS功能。LTDS的影响取决于公司从战略到执行的决策链接/协调能力、对场景建模和协作的支持,以及在大量外部数据中发现见解的能力。这些功能可以使用软件解决方案来加强,该解决方案具有充分支持IBP的功能。随着IBP流程变得更加成熟,S&OP和公司财务计划工具之间的集成更加明显,LT-DS的好处也随之增加。当这种情况发生估长期场景和权衡,这可以改善配置计划过程中的决策。高不到目标受众的1%CoupaLLamasoftPreved可组合供应链计划以模块化的方式设计其商业模式、技术架以及合作伙伴生态系统。这样做是为了实现SCP技术格局,可以在任何需要的时刻快速、安全地进行更改和组合。可组合企业的核心原则——模块化、效率、持续改进和适应性创新——为大多数组织所熟悉,并已开始在各种应用领域中被讨论,如ERP。但这些通常是大型应用程序足迹,其中可以通过适当地将相当大的组件组合在一起来启用业务流程。在SCP中,我们有一个更加集中的应用领域——但可组合性的概念将变得高度相关。几年来,Gartner一直看到SCP技术市场正在发生变化的最初迹象。目前,市场上有离散的计划解决方案,将数据、数据模型和预测分析紧密捆绑在一个应用程序中,以促进供应链计划。这将转变为一个技术市场,用户可以从各种不同的来源将数据、数据模型和分析(包括预测性和规范性)来源于一个能够实现供应链计划的环境。这种变化意味着用户可以很容易地将不同和不断变化的数据源纳入他们的计划中;他们可以根据这些数据创建一个单一的数据模型(又称数字供应链孪生)来推动决策协调。这也意味着他们可以轻松地插入最合适的计划分析,以创建和管理各种计划,所有这些都是由数字供应链孪生运行的。向可组合SCP的转变将受到公司数字化计划并最终实现第五阶段计划成熟度的愿景的推动,这两个阶段都以灵活性和创新为特征。因此,在某种程度上,它将与公司的这些举措联系在一起。实现可组合SCP的一致利益的挑战不是任何一项特定的投资,而是“可组合企业思维”普遍实践的基本要求。这种根本性的文化变化——从熟悉的供应链结构的刚性到积极的持续变化的弹性——是实现可组合供应链利益的最重要障碍。用户建议:在数字化转型过程中指导其组织的供应链领导者应:●制定一种SCP技术策略,其中包括可组合SCP的特征——或者失去在SCP中适应和获得有效性的能力。因此,重新构想您的SCP,使其与新一代的应用程序、体系结构和技术保持一致。旧的单一SCP思维和做法必须消失。确保该战略涵盖数据的获取和管理,以及将这些数据关联到一个有意义的数字供应链孪生中。还要确保它能够将来自各种来源的可配置预测和规定分析插入到这对孪生中。●不要把你的思维局限于传统的SCP资源,比如材料和机器。最终,所有受限制的资源(如人员、资金、空间、温室气体、交通)都需要包括在内,以确保制定可行的计划。在您的SCP之旅中投资支持技术-数据集成和管理能力、数字供应链孪生、人工智能、低代码/无代码开发、API、事件管理、开放数据和分析生态系统都必须是可组合SCP战略的一部分。业务影响:在业务、技术和文化中采用可组合SCP模式的组织实现了新的弹性水平和对计划决策创新的变革性途径。他们从僵化而低效的传统等级和孤立思维规范,转变为可组合的计划体验的积极敏捷。这样的组织从内部和外部组件生态系统(称为“一揽子业务能力”,可以涵盖数据和/或分析)中收集(整合)其计划决策经验,以使其组织能够积极跟踪和支持其用户和供应链的特定(和动态)需求。高不到目标受众的1%自主计划被定义为自动预测(计划创建)和自动处方(计划判断)。计划的制定涉及这两个要素。有一个或多个关于未来的预测,然后是处这些未来中哪一个是最可取的。在自主计划的情况下,没有人直接参与决策。对于那些希望数字化供应链计划的公司来说,自主计划越来越受欢迎。供应链计划日益自动化被许多人视为数字化计划的关键目标之一。因此,围绕自主计划有很多炒作。自主计划的概念对SCP来说是新的,传统上对大多数公司来说,这是一项相当手工的活动。然而,对于许多公司来说,这更多的是一种愿景,而不是一个现实的目标。没有一家公司会实现100%的计划决策自主。无论一家公司应用多少人工智能或ML,在一些计划决策(主要是处方)中总是需要人类的参与和判断。只有某些决策类型适用于完全自动化。公司需要现实地考虑他们可以自主做Cynefin策类型框架的应用是帮助理解当前SCP环境中存在的决策类型组合的好方法。这就是目前哪些计划决策是完全自主做出的正确类型的指标。试图完全自动化错误类型的计划决策将导致失败。公司应将其自主计划目标与其数字化计划成熟度保持一致。随着数字化计划成熟度的提高,计划决策类型的组合将自然发生变化,这将有助于自主做出更多此类决策。在CORE模型的不同层,大多数合适的决策类型都是不同的(这反映了公司中存在的各种计划层)。●对正在部署的任何新分析具有良好的透明度将有助于提高人们对这些新方法的信任和信心,这将有利于部署更多的决策自动化。●随着公司努力实现更多的决策自动化,计划的重点需要从以人为中心(低成熟度)转变为以流程为中心(中成熟度),再转变为以决策为中心(高成熟度)。通过对正在考虑的计划决策的高度关注,一家公司可以密切关注其类型和发展,从而在不同的时间应该应用多少自动化。●通常出于两个主要原因考虑自主计划。第一个是关于计划师的生产力。传统的计划(模拟计划)往往是手动的,尤其是处方元素(即选择要使用的计划)。随着计划自动化程度的提高,公司可以用更少的人力计划人员做更多的事情。与此相关的是,人们做以前由于计划过于手动无法做的事情的能力越来越强(例如,运行和比较大量的多个计划,由于运行连续计划而做出决策等)。第二个领域是减少计划决策中的人为决策偏见。由于我们大脑的工作方式,人类会做出有偏见的决定。在某些情况下,减少人类对计划决策的直接参与将有助于缓解这种人类偏见。高目标受众的5%至20%flowAdexaAeraBlueYonderGAINSyste 4.供应链计划技术的未来若干发展趋势上一节介绍了Gartner2020年11月发布的2021供应链计划技术发展周期研究报告,目前为和供应链研讨会【29】上研讨SCP技术的发展趋势。此外,作者也注意到知名咨询公司IDC在SCP技术方面的研究。本节将简单介绍几个供应链计划技术的未来发在会议【29】中,Noodle.ai的JeffAlpert的演讲"概率计划(见图17):利用人工智能在图17:概率预测和概率计划(来源:Gartner【28】)项目(通常最终包含大量过剩库存)。更明智的预测会带来更好的库存管理(反过来,更快乐的客户和更高的利润率)。概率计划(见图17)加人工智能和数字供应链孪生等新兴技术将是未来SCP技术的发展方向之一。作者预测它将成为2023年供应链计划技术发展周期曲线上的一颗新星。 2022年GartnerAl技术成熟度曲线强调了人工智能作为供应链计划领域颠覆性趋势的重要性【29】。预计到2025年,人工智能将成为供应链计划的主流技术。在2023Gartner供应链研讨会上浏览Xpo提供了大量证据,表明这最终将成为现实。大多数技术供应商展位都提到了人工智能,并在演示中不断提及。【30】指出:95%的供应链计划供应商正在开发或已经具备人工智能能力。这一统计数据突显了令人印象深刻的95%数字,有力地说明了人工智能在供应链计划领域的注入轨迹。它强调了人工智能采用的不可避免的势头,预示着在不久的将来人工智能功能将成为常态而不是例外。转向人工智能的供应商规模之大,生动地描绘了该技术正在改变供应链物流的支柱。强调这一点,为潜在投资者、利益相关者和读者提供了更清晰的视角,让他们了解人工智能重新定义曾经传统行业的潜力。4.3以决策为中心的计划近年来,首席供应链官所处的环境发生了巨大变化,但大多数组织未能调整其计划方法。供应链计划的基本原理已经存在很长时间了。它们的设计方式使流程成为决策的焦点——无论是通过战略计划、销售和运营计划(S&OP)还是销售和运营执行(S&OE)。根据Gartner的2022年供应链计划业务案例调查,很少有公司将计划流程作为专门的计划来启动,而是依靠固定的循环计划来做出决策。这种方法并不能完全解决当今供应链面临的需求水平、供应变化性和复杂性。需要新的计划理念。当今的供应链需要一个符合其组织需求的模型。作为回应,具有前瞻性的供应链正在转向以决策为中心的计划(DCP)来进行业务决策。事件评估eGartner指出【31】:以决策为中心的计划(DCP)不是一个新流程;它是一个新概念,一种用于商业决策的新方法。以决策为中心意味着流程和活动旨在为业务做出最佳决策,涉及正确的决策者、正确的利益相关者,这些利益相关者可能会根据所做的决策而有很大差异。因此,决策本身成为所有决策活动的焦点。理想情况下,DCP应由现代供应链计划技术提 策。GartnerDCP框架由4个部分组成(见图18):DCP有助于引入所有必要的参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省南昌中学2025-2026学年高一上学期1月期末物理试题(含答案)
- 微软面试题及答案
- 初中政治老师培训课件
- 法人代表委托书模板集合7篇
- 清朝娘子关战役
- 风力发电系统技术要点
- 大体积施工技术要领
- 人教版《道德与法治》八年级上册:10.2天下兴亡-匹夫有责课件
- 初中信息技术新课标解读
- 2025 小学三年级科学下册植物孢子繁殖(蕨类)观察课件
- 2025年社工社区招聘笔试题库及答案
- 病毒性肺炎诊疗指南(2025年版)
- 2026年度新疆兵团草湖项目区公安局招聘警务辅助人员工作(100人)笔试参考题库及答案解析
- GB/T 46778-2025精细陶瓷陶瓷造粒粉压缩强度试验方法
- 采购主管年终工作总结
- 物业现场管理培训课件
- 数据访问控制策略分析报告
- 子宫内膜异位症病因课件
- GB/T 18910.103-2025液晶显示器件第10-3部分:环境、耐久性和机械试验方法玻璃强度和可靠性
- 经圆孔翼腭神经节射频调节术
- 梦虽遥追则能达愿虽艰持则可圆模板
评论
0/150
提交评论