




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省鄂州地区数学九上期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.关于抛物线,下列说法错误的是A.开口向上 B.对称轴是y轴C.函数有最大值 D.当x>0时,函数y随x的增大而增大2.已知点A(2,y1)、B(4,y2)都在反比例函数(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定3.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B.C. D.4.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.5.下列事件中是必然事件的是()A.﹣a是负数 B.两个相似图形是位似图形C.随机抛掷一枚质地均匀的硬币,落地后正面朝上 D.平移后的图形与原来的图形对应线段相等6.在Rt△ABC中,∠C=900,∠B=2∠A,则cosB等于()A. B. C. D.7.如图,△ABC内接于⊙O,OD⊥AB于D,OE⊥AC于E,连结DE.且DE=,则弦BC的长为()A. B.2 C.3 D.8.反比例函数的图象经过点,,当时,的取值范围是()A. B. C. D.9.我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是中心对称图形的是()A.①③ B.①④ C.②③ D.②④10.如图,网格中的两个三角形是位似图形,它们的位似中心是()A.点A B.点B C.点C D.点D二、填空题(每小题3分,共24分)11.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况如表,请你估计这400名同学的家庭一个月节约用水的总量大约是_____.节水量/m30.20.250.30.40.5家庭数/个2467112.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为_____.13.关于x的方程的解是,(a,m,b均为常数,),则关于x的方程的解是________.14.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为_______;15.如图,圆形纸片⊙O半径为5,先在其内剪出一个最大正方形,再在剩余部分剪出4个最大的小正方形,则4个小正方形的面积和为_______.16.已知,则=_____.17.分母有理化:=_____.18.把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_______粒.三、解答题(共66分)19.(10分)图1,图2分别是一滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿与斜坡垂直,大腿与斜坡平行,且三点共线,若雪仗长为,,,求此刻运动员头部到斜坡的高度(精确到)(参考数据:)20.(6分)如图,正方形的对角线、相交于点,过点作的平行线,过点作的平行线,它们相交于点.求证:四边形是正方形.21.(6分)已知:如图,在矩形中,点为上一点,连接,过点作于点,与相似吗?请说明理由.22.(8分)数学概念若点在的内部,且、和中有两个角相等,则称是的“等角点”,特别地,若这三个角都相等,则称是的“强等角点”.理解概念(1)若点是的等角点,且,则的度数是.(2)已知点在的外部,且与点在的异侧,并满足,作的外接圆,连接,交圆于点.当的边满足下面的条件时,求证:是的等角点.(要求:只选择其中一道题进行证明!)①如图①,②如图②,深入思考(3)如图③,在中,、、均小于,用直尺和圆规作它的强等角点.(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有.(填序号)23.(8分)已知等边△ABC的边长为2,(1)如图1,在边BC上有一个动点P,在边AC上有一个动点D,满足∠APD=60°,求证:△ABP~△PCD(2)如图2,若点P在射线BC上运动,点D在直线AC上,满足∠APD=120°,当PC=1时,求AD的长(3)在(2)的条件下,将点D绕点C逆时针旋转120°到点D',如图3,求△D′AP的面积.24.(8分)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.25.(10分)解方程:x2-7x-18=0.26.(10分)某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.1.(1)求y关于x的函数关系式;(2)写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额一年销售产品的总进价一年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于17.1万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?
参考答案一、选择题(每小题3分,共30分)1、C【分析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【题目详解】A.因为a=2>0,所以开口向上,正确;B.对称轴是y轴,正确;C.当x=0时,函数有最小值0,错误;D.当x>0时,y随x增大而增大,正确;故选:C【题目点拨】考查二次函数的图象与性质,掌握二次函数的图象与系数的关系是解题的关键.2、B【题目详解】试题分析:∵当k<0时,y=在每个象限内,y随x的增大而增大,∴y1<y2,故选B.考点:反比例函数增减性.3、D【解题分析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.4、B【分析】利用同角三角函数间的基本关系求出sinA的值即可.【题目详解】:∵Rt△ABC中,cosA=,
∴sinA==,
故选B.【题目点拨】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.5、D【解题分析】分析:根据必然事件指在一定条件下,一定发生的事件,可得答案.详解:A.
−a是非正数,是随机事件,故A错误;B.两个相似图形是位似图形是随机事件,故B错误;C.随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件,故C错误;D.平移后的图形与原来对应线段相等是必然事件,故D正确;故选D.点睛:考查随机事件,解决本题的关键是正确理解随机事件,不可能事件,必然事件的概念.6、B【题目详解】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,∴∠B=60°,∴cosB=故选B【题目点拨】本题考查三角函数值,熟记特殊角三角函数值是解题关键.7、C【分析】由垂径定理可得AD=BD,AE=CE,由三角形中位线定理可求解.【题目详解】解:∵OD⊥AB,OE⊥AC,∴AD=BD,AE=CE,∴BC=2DE=2×=3故选:C.【题目点拨】本题考查了三角形的外接圆与外心,三角形的中位线定理,垂径定理等知识,灵活运用这些性质进行推理是本题的关键.8、B【解题分析】由图像经过A(2,3)可求出k的值,根据反比例函数的性质可得时,的取值范围.【题目详解】∵比例函数的图象经过点,∴-3=,解得:k=-6,反比例函数的解析式为:y=-,∵k=-6<0,∴当时,y随x的增大而增大,∵x=1时,y=-6,x=3时,y=-2,∴y的取值范围是:-6<y<-2,故选B.【题目点拨】本题考查反比例函数的性质,k>0时,图像在一、三象限,在各象限y随x的增大而减小;k<0时,图像在二、四象限,在各象限y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.9、D【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【题目详解】解:①不是中心对称图形,故本选项不合题意;②是中心对称图形,故本选项符合题意;③不是中心对称图形,故本选项不合题意;④是中心对称图形,故本选项符合题意;故选:D.【题目点拨】本题考查了中心对称图形的定义,熟悉掌握概念是解题的关键10、D【分析】利用对应点的连线都经过同一点进行判断.【题目详解】如图,位似中心为点D.故选D.【题目点拨】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.二、填空题(每小题3分,共24分)11、110m1.【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【题目详解】解:20名同学各自家庭一个月平均节约用水是:(0.2×2+0.25×4+0.1×6+0.4×7+0.5×1)÷20=0.125(m1),因此这400名同学的家庭一个月节约用水的总量大约是:400×0.125=110(m1),故答案为:110m1.【题目点拨】此题考查的是根据样本估计总体,掌握样本平均数的公式是解决此题的关键.12、22015π【分析】连接P1O1,P2O2,P3O3,易求得PnOn垂直于x轴,可知为圆的周长,再找出圆半径的规律即可解题.【题目详解】解:连接P1O1,P2O2,P3O3…,∵P1是⊙O1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,PnOn垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案为:22015π.【题目点拨】本题考查了图形类规律探索、一次函数的性质、等腰直角三角形的性质以及弧长的计算,本题中准确找到圆半径的规律是解题的关键.13、x1=-12,x2=1【分析】把后面一个方程中的x+3看作一个整体,相当于前面方程中的x来求解.【题目详解】解:∵关于x的方程的解是,(a,m,b均为常数,a≠0),∴方程变形为,即此方程中x+3=-9或x+3=11,解得x1=-12,x2=1,故方程的解为x1=-12,x2=1.故答案为x1=-12,x2=1.【题目点拨】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算.14、72°【题目详解】五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为=72°.故答案为72°.15、16【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4个小正方形的面积和.【题目详解】解:如图,点A为上面小正方形边的中点,点B为小正方形与圆的交点,D为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD为等腰直角三角形,∵⊙O半径为5,根据垂径定理得:∴OD=CD==5,设小正方形的边长为x,则AB=,则在直角△OAB中,OA2+AB2=OB2,即,解得x=2,∴四个小正方形的面积和=.故答案为:16.【题目点拨】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.16、【解题分析】根据题意,设x=5k,y=3k,代入即可求得的值.【题目详解】解:由题意,设x=5k,y=3k,∴==.故答案为.【题目点拨】本题考查了分式的求值,解题的关键是根据分式的性质对已知分式进行变形.17、+.【解题分析】一般二次根式的有理化因式是符合平方差公式的特点的式子.据此作答.【题目详解】解:==+.故答案为+.【题目点拨】本题考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.18、1【分析】先根据取出100粒豆子,其中有红豆5粒,确定取出红豆的概率为5%,然后用100÷5%求出豆子总数,最后再减去红豆子数即可.【题目详解】解:由题意得:取出100粒豆子,红豆的概率为5%,则豆子总数为100÷5%=2000粒,所以该袋中黑豆约有2000-100=1粒.故答案为1.【题目点拨】本题考查了用频率估计概率,弄清题意、学会用样本估计总体的方法是解答本题的关键.三、解答题(共66分)19、1.3m【分析】由三点共线,连接GE,根据ED⊥AB,EF∥AB,求出∠GEF=∠EDM=90°,利用锐角三角函数求出GE,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,即可得到答案.【题目详解】三点共线,连接GE,∵ED⊥AB,EF∥AB,∴∠GEF=∠EDM=90°,在Rt△GEF中,∠GFE=62°,,∴m,在Rt△DEM中,∠EMD=30°,EM=1m,∴ED=0.5m,∴h=GE+ED=0.75+0.5m,答:此刻运动员头部到斜坡的高度约为1.3m.【题目点拨】此题考查平行线的性质,锐角三角函数的实际应用,根据题意构建直角三角形是解题的关键.20、见解析【分析】根据已知条件先证明四边形OBEC是平行四边形,再证明∠BOC=90°,OC=OB即可判定四边形OBEC是正方形.【题目详解】∵,,∴四边形是平行四边形,∵四边形是正方形,∴,,∴,∴四边形是矩形,∵,∴四边形是正方形.【题目点拨】本题考查正方形的性质和判定,解题的关键是熟练掌握正方形的性质和判定.21、相似,见解析【分析】先得出,,再根据两角对应相等两个三角形相似即可判断.【题目详解】解:相似,理由如下:在矩形中,,∴,∵,∴,∴,∴.【题目点拨】本题考查矩形的性质、相似三角形的判定等知识,解题的关键是熟练掌握相似三角形的判定定理,属于中考常考题型.22、(1)100、130或1;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【题目详解】(1)(i)若=时,∴==100°(ii)若时,∴(360°-)=130°;(iii)若=时,360°--=1°,综上所述:=100°、130°或1°故答案为:100、130或1.(2)选择①:连接∵∴∴∵,∴∴是的等角点.选择②连接∵∴∴∵四边形是圆的内接四边形,∴∵∴∴是的等角点(3)作BC的中垂线MN,以C为圆心,BC的长为半径作弧交MN与点D,连接BD,根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD的垂直平分线交MN于点O以O为圆心OB为半径作圆,交AD于点Q,圆O即为△BCD的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=(360°-∠BQC)=120°∴∠BQA=∠CQA=∠BQC如图③,点即为所求.(4)③⑤.①如下图所示,在RtABC中,∠ABC=90°,O为△ABC的内心假设∠BAC=60°,∠ACB=30°∵点O是△ABC的内心∴∠BAO=∠CAO=∠BAC=30°,∠ABO=∠CBO=∠ABC=45°,∠ACO=∠BCO=∠ACB=15°∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°显然∠AOC≠∠AOB≠∠BOC,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误;③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q为△ABC的强等角,但Q不在BC的中垂线上,故QB≠QC,故④错误;⑤由(3)可知,当的三个内角都小于时,必存在强等角点.如图④,在三个内角都小于的内任取一点,连接、、,将绕点逆时针旋转到,连接,∵由旋转得,,∴是等边三角形.∴∴∵、是定点,∴当、、、四点共线时,最小,即最小.而当为的强等角点时,,此时便能保证、、、四点共线,进而使最小.故答案为:③⑤.【题目点拨】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.23、(1)见解析;(2);(3)【分析】(1)先利用三角形的内角和得出∠BAP+∠APB=120°,再用平角得出∠APB+∠CPD=120°,进而得出∠BAP=∠CPD,即可得出结论;(2)先构造出含30°角的直角三角形,求出PE,再用勾股定理求出PE,进而求出AP,再判断出△ACP∽∠APD,得出比例式即可得出结论;(3)先求出CD,进而得出CD',再构造出直角三角形求出D'H,进而得出D'G,再求出AM,最后用面积差即可得出结论.【题目详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,在△ABP中,∠B+∠APB+∠BAP=180°,∴∠BAP+∠APB=120°,∵∠APB+∠CPD=180°﹣∠APD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD;(2)如图2,过点P作PE⊥AC于E,∴∠AEP=90°,∵△ABC是等边三角形,∴AC=2,∠ACB=60°,∴∠PCE=60°,在Rt△CPE中,CP=1,∠CPE=90°﹣∠PCE=30°,∴CE=CP=,根据勾股定理得,PE=,在Rt△APE中,AE=AC+CE=2+=,根据勾股定理得,AP2=AE2+PE2=7,∵∠ACB=60°,∴∠ACP=120°=∠APD,∵∠CAP=∠PAD,∴△ACP∽△APD,∴,∴AD==;(3)如图3,由(2)知,AD=,∵AC=2,∴CD=AD﹣AC=,由旋转知,∠DCD'=120°,CD'=CD=,∵∠DCP=60°,∴∠ACD'=∠DCP=60°,过点D'作D'H⊥CP于H,在Rt△CHD'中,CH=CD'=,根据勾股定理得,D'H=CH=,过点D'作D'G⊥AC于G,∵∠ACD'=∠PCD',∴D'G=D'H=(角平分线定理),∴S四边形ACPD'=S△ACD'+S△PCD'=AC•D'G+CP•DH'=×2×+×1×=,过点A作AM⊥BC于M,∵AB=AC,∴BM=BC=1,在Rt△ABM中,根据勾股定理得,AM=BM=,∴S△ACP=CP•AM=×1×=,∴S△D'AP=S四边形ACPD'﹣S△ACP=﹣=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字艺术市场数字化交易平台在艺术品市场中的用户体验提升报告
- 爱好养花面试题及答案
- 施工现场事故案例学习考核题目细解试题及答案
- 废旧塑料回收再利用技术革命2025年产业发展策略分析报告
- 盐业执法考试试题及答案
- 建筑施工安全新技术试题及答案
- 潮玩市场2025年研究报告:收藏价值与文化传播的双重视角解读
- 江苏省句容市崇明片2024-2025学年初三毕业班阶段性测试(七)英语试题含答案
- 智能仓储物流系统智能化改造对人力资源优化影响报告
- 沈阳城市学院《德汉口译》2023-2024学年第二学期期末试卷
- 妊娠期高血压疾病诊治指南2020完整版
- 铜及铜合金物理冶金基础-塑性加工原理
- 2023年自考外国新闻事业史历年考题及部分答案
- 安徽汇宇能源发展有限公司25万吨年石脑油芳构化项目环境影响报告书
- 新《行政处罚法》亮点ppt解读
- LY/T 1970-2011绿化用有机基质
- 部编人教版五年级语文下册第18课《威尼斯的小艇》精美课件
- 消防(电动车)火灾安全知识课件
- VSM(价值流图中文)课件
- 上海交通大学医学院附属仁济医院-日间手术管理信息化实践与发展
- 核电站入厂安全培训课件
评论
0/150
提交评论