版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆市永川区第五中学数学九年级第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.2.下列成语中描述的事件必然发生的是()A.水中捞月 B.日出东方 C.守株待兔 D.拔苗助长3.若在实数范围内有意义,则的取值范围是()A. B. C. D.4.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x,那么下面列出的方程正确的是()A.180(1+x)=300 B.180(1+x)2=300C.180(1﹣x)=300 D.180(1﹣x)2=3005.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(-1,1),下列结论:①abc<1;②b2-4ac=1;③a<2;④4a-2b+c>1.其中正确结论的个数是()A.1 B.2 C.3 D.46.在下列图形中,不是中心对称图形的是()A. B. C. D.7.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠PAD=∠PDA=60º;②△PAO≌△ADE;③PO=r;④AO∶OP∶PA=1∶∶.A.①④ B.②③ C.③④ D.①③④8.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.9.若,则的值为()A.0 B.5 C.-5 D.-1010.已知反比例函数的图象经过点(1,2),则k的值为()A.0.5 B.1 C.2 D.411.下列说法正确的是()A.对应边都成比例的多边形相似 B.对应角都相等的多边形相似C.边数相同的正多边形相似 D.矩形都相似12.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为()A.1:3 B.1:4 C.1:5 D.1:6二、填空题(每题4分,共24分)13.二次函数y=2x2﹣4x+4的图象如图所示,其对称轴与它的图象交于点P,点N是其图象上异于点P的一点,若PM⊥y轴,MN⊥x轴,则=_____.14.已知实数x,y满足,则x+y的最大值为_______.15.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm216.如图,□中,,,的周长为25,则的周长为__________.17.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.18.如图,在半径为5的⊙中,弦,是弦所对的优弧上的动点,连接,过点作的垂线交射线于点,当是以为腰的等腰三角形时,线段的长为_____.三、解答题(共78分)19.(8分)解不等式组,并把它的解集在数轴上表示出来.20.(8分)前苏联教育家苏霍姆林斯曾说过:“让学生变聪明的方法,不是补课,不是増加作业量,而是阅读,阅读,再阅读”.课外阅读也可以促进我们养成终身学习的习惯.云南某学校组织学生利用课余时间多读书,读好书,一段时间后,学校对部分学生每周阅读时间进行调查,并绘制了不完整的频数分布表和频数分布直方图,如图所示:时间(时)频数百分比1010%25mn30%a20%1515%根据图表提供的信息,回答下列问题:(1)填空:______,________;(2)请补全频数分布直方图;(3)该校共有3600名学生,估计学生每周阅读时间x(时)在范围内的人数有多少人?21.(8分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线.(2)若⊙O的半径为3cm,∠C=30°,求图中阴影部分的面积.22.(10分)如图,已知在矩形ABCD中,AB=6,BC=8,点P从点C出发以每秒1个单位长度的速度沿着CD在C点到D点间运动(当达D点后则停止运动),同时点Q从点D出发以每秒2个单位长度的速度沿着DA在D点到A点间运动(当达到A点后则停止运动).设运动时间为t秒,则按下列要求解决有关的时间t.(1)△PQD的面积为5时,求出相应的时间t;(2)△PQD与△ABC可否相似,如能相似求出相应的时间t,如不能说明理由;(3)△PQD的面积可否为10,说明理由.23.(10分)在一空旷场地上设计一落地为矩形的小屋,,拴住小狗的长的绳子一端固定在点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为.(1)如图1,若,则__________.(2)如图2,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边形的小屋,其他条件不变,则在的变化过程中,当取得最小值时,求边的长及的最小值.24.(10分)如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.25.(12分)如图,已知在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AE=6,劣弧DE的长为π,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).26.已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.(1)如图1,当点G在CD上时,求证:△AEF≌△DFG;(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MN•MD.
参考答案一、选择题(每题4分,共48分)1、A【解题分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【题目详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4,故选A.【题目点拨】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.2、B【分析】根据事件发生的可能性大小判断.【题目详解】解:A、水中捞月,是不可能事件;B、日出东方,是必然事件;C、守株待兔,是随机事件;D、拔苗助长,是不可能事件;故选B.【题目点拨】本题主要考查随机事件和必然事件的概念,解决本题的关键是要熟练掌握随机事件和必然事件的概念.3、A【解题分析】根据二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0,列出不等式,解不等式即可.【题目详解】解:由题意可知:解得:故选A.【题目点拨】此题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0是解决此题的关键.4、B【分析】本题可先用x表示出第一次提价后商品的售价,再根据题意表示出第二次提价后的售价,然后根据已知条件得到关于x的方程.【题目详解】当商品第一次提价后,其售价为:180(1+x);当商品第二次提价后,其售价为:180(1+x)1.∴180(1+x)1=2.故选:B.【题目点拨】本题主要考查一元二次方程的应用,要根据题意表示出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于2即可.5、A【分析】根据抛物线的图像和表达式分析其系数的值,通过特殊点的坐标判断结论是否正确.【题目详解】∵函数图象开口向上,∴,又∵顶点为(,1),∴,∴,由抛物线与轴的交点坐标可知:,∴c>1,∴abc>1,故①错误;∵抛物线顶点在轴上,∴,即,又,∴,故②错误;∵顶点为(,1),∴,∵,∴,∵,∴,则,故③错误;由抛物线的对称性可知与时的函数值相等,∴,∴,故④正确.综上,只有④正确,正确个数为1个.故选:A.【题目点拨】本题考查了二次函数图象与系数的关系,根据二次函数图象以及顶点坐标找出之间的关系是解题的关键.6、C【解题分析】根据中心对称图形的概念,对各选项分析判断即可得解.【题目详解】解:A、是中心对称图形,故本选项不符合题意;
B、是中心对称图形,故本选项不符合题意;
C、不是中心对称图形,故本选项符合题意;
D、是中心对称图形,故本选项不符合题意.故选:C.【题目点拨】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解题分析】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△PAD是等腰三角形,∠PAD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD是⊙O的直径,∴AD>AE=AP,②△PAO≌△ADE错误,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO=r,③正确;∵AO:OP:PA=r:r:r=1::.∴④正确;说法正确的是③④,故选C.8、B【分析】根据轴对称图形与中心对称图形的概念判定即可.【题目详解】解:A、不是轴对称图形,也是中心对称图形B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故答案为B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念,掌握轴对称和中心对称概念的区别是解答本题的关键.9、C【分析】将转换成的形式,再代入求解即可.【题目详解】将代入原式中原式故答案为:C.【题目点拨】本题考查了代数式的运算问题,掌握代入法是解题的关键.10、C【解题分析】将(1,1)代入解析式中即可.【题目详解】解:将点(1,1)代入解析式得,,k=1.故选:C.【题目点拨】此题考查的是求反比例系数解析式,掌握用待定系数法求反比例函数解析式是解决此题的关键.11、C【解题分析】试题分析:根据相似图形的定义,对选项一一分析,排除错误答案.解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;D、矩形属于形状不唯一确定的图形,故错误.故选C.考点:相似图形.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.12、C【解题分析】根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.【题目详解】解:连接CE,∵AE∥BC,E为AD中点,
∴.
∴△FEC面积是△AEF面积的2倍.
设△AEF面积为x,则△AEC面积为3x,
∵E为AD中点,
∴△DEC面积=△AEC面积=3x.
∴四边形FCDE面积为1x,
所以S△AFE:S四边形FCDE为1:1.
故选:C.【题目点拨】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.二、填空题(每题4分,共24分)13、1.【分析】根据题目中的函数解析式可得到点P的坐标,然后设出点M、点N的坐标,然后计算即可解答本题.【题目详解】解:∵二次函数y=1x1﹣4x+4=1(x﹣1)1+1,∴点P的坐标为(1,1),设点M的坐标为(a,1),则点N的坐标为(a,1a1﹣4a+4),∴===1,故答案为:1.【题目点拨】本题考查了二次函数与几何的问题,解题的关键是求出点P左边,设出点M、点N的坐标,表达出.14、4【解题分析】用含x的代数式表示y,计算x+y并进行配方即可.【题目详解】∵∴∴∴当x=-1时,x+y有最大值为4故答案为4【题目点拨】本题考查的是求代数式的最大值,解题的关键是配方法的应用.15、60π【题目详解】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解:圆锥的侧面积=π×6×10=60πcm1.16、2【分析】根据平行四边形的性质可得出△ABD≌CDB,求得△ABD的周长,利用三角形相似的性质即可求得△DEF的周长.【题目详解】解:∵EF∥AB,DE:AE=2:3,
∴△DEF∽△DAB,,∴△DEF与△ABD的周长之比为2:1.
又∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,BD=DB,
∴△ABD≌△CDB(SSS),又△BDC的周长为21,∴△ABD的周长为21,
∴△DEF的周长为2,
故答案为:2.【题目点拨】本题考查了相似三角形的判定与性质,理解相似三角形的周长比与相似比的关系是解题的关键.17、【解题分析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、8或【解题分析】根据题意,以为腰的等腰三角形有两种情况,当AB=AP时,利用垂径定理及相似三角形的性质列出比例关系求解即可,当AB=BP时,通过角度运算,得出BC=AB=8即可.【题目详解】解:①当AB=AP时,如图,连接OA、OB,延长AO交BP于点G,故AG⊥BP,过点O作OH⊥AB于点H,∵在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,∴,由垂径定理可知,∴,在Rt△OAH中,在Rt△CAP中,,且∴,在Rt△PAG与Rt△PCA中,∠GPA=∠APC,∠PGA=∠PAC,∴Rt△PAG∽Rt△PCA∴,则,∴;②当AB=BP时,如下图所示,∠BAP=∠BPA,∴在Rt△PAC中,∠C=90°-∠BPA=90°-∠BAP=∠CAB,∴BC=AB=8故答案为8或【题目点拨】本题考查了圆的性质及圆周角定理、相似三角形的性质、等腰三角形的判定等知识点,综合性较强,难度较大,解题的关键是灵活运用上述知识进行推理论证.三、解答题(共78分)19、,在数轴上表示见解析.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【题目详解】解:解解不等式①得;解不等式②得;把解集在数轴上表示为所以不等式组的解集为.【题目点拨】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20、(1)25%,30;(2)见解析;(3)1800人【分析】(1)根据百分比之和等于1求出m的值,由0≤x<3的频数及频率求出总人数,总人数乘以对应的百分比求出n的值;(2)总人数乘以对应的百分比求出a的值,从而补全直方图;(3)总人数乘以对应的百分比可得答案.【题目详解】(1)抽取的学生人数为:(人);∴,.故答案为:25%,30;(2),补全频数分布直方图如解图所示;(3)(人),答:估计学生每周阅读时间x(时)在范围内的人数有1800人.【题目点拨】错因分析:第(1)问,①未搞清楚各组百分比之和等于1;②各组频数之和等于抽取的样本总数;第(2)问,不会利用各组的频数等于样本总数乘各组所占的百分比来计算,第(3)问,样本估计总体时,忽略了要用总人数乘时间段“6~9和9~12”这两个时间段所占的百分比之和.21、(1)见解析;(1)(3π﹣)cm1【分析】(1)由等腰三角形的性质证出∠ODB=∠C.得出OD∥AC.由已知条件证出DE⊥OD,即可得出结论;(1)由垂径定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面积,再求出扇形BOD的面积,即可得出结果.【题目详解】(1)连接OD,如图1所示:∵OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线.(1)过O作OF⊥BD于F,如图1所示:∵∠C=30°,AB=AC,OB=OD,∴∠OBD=∠ODB=∠C=30°,∴∠BOD=110°,在Rt△DFO中,∠FDO=30°,∴OF=OD=cm,∴DF==cm,∴BD=1DF=3cm,∴S△BOD=×BD×OF=×3×=cm1,S扇形BOD==3πcm1,∴S阴=S扇形BOD﹣S△BOD==(3π﹣)cm1.【题目点拨】本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、勾股定理、三角形和扇形面积的计算等知识;熟练掌握切线的判定,由垂径定理和勾股定理求出OF和DF是解决问题(1)的关键.22、(1)t=1;(2)t=2.4或;(3)△PQD的面积不能为1,理由见解析.【分析】(1)△PQD的两直角边分别用含t的代数式表示,由△PQD的面积为5得到关于t的方程,由此可解得t的值;(2)设△PQD与相似△ABC,由图形形状考虑可知有两种可能性,对两种可能性分别给予讨论可以求得答案;(3)与(1)类似,可以用含t的表达式表示△PQD的面积,令其等于1,由所得方程解的情况可以作出判断.【题目详解】因为四边形ABCD是矩形,所以AB=CD=6,BC=AD=8,(1)S△PQD=解得:t1=1t2=5(舍去)(2)①当时△PDQ~△ABC即得t=2.4②当时△PQD̰~△CBA即得;(3)△PQD的面积为1时,,此方程无实数根,即△PQD的面积不能为1.【题目点拨】本题综合考查三角形相似、面积计算与动点几何问题,利用方程的思想方法解题是关键所在.23、(1)88π;(2)BC长为;S的最小值为.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;
(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10-x为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可.【题目详解】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,
∴S=×π•102+•π•62+•π•42=88π,故答案为:88π;(2)如图2,设BC=x,则AB=10-x,∴S=•π•102+•π•x2+•π•(10-x)2=(x2-5x+250)=(x-)2+,当x=时,S取得最小值,∴BC长为;S的最小值为.【题目点拨】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.24、(1)AC=8cm;AD=cm;(2)PC与圆⊙O相切,理由见解析【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;
(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【题目详解】(1)连结BD,如图1所示,
∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:
∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【题目点拨】本题考查了切线的性质和判定,切线长定理,圆周角定理,是圆的综合题,综合性比较强,难度适中,熟练掌握直线与圆的位置关系的判定方法是解题的关键.25、(1)直线BC与⊙O相切,理由详见解析;(2).【分析】(1)连接OD,由角平分线的定义可得∠DAC=∠DAB,根据等腰三角形的性质可得∠OAD=∠ODA,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级语文下册第二单元6阿西莫夫短文两篇第1课时教案新人教版2020122544
- 2025年针纺织品购销合同
- 2025版耳鸣症状剖析及护理注意事项
- 合成生物学科普
- 急性酒精中毒个案护理培训
- 非遗文化扎染介绍
- 循环水管道安装施工方案
- 口腔检查操作方法
- 环境旅游管理专业介绍
- 产科入院宣教科普
- 高校后勤管理规范及服务标准
- 危险品运输资格(装卸管理人员)考试2025年题库及答案
- 迟发性运动障碍临床进展讲课文档
- 中国邮政集团工作人员招聘考试笔试试题(含答案)
- 泌尿外科健康宣教
- 间歇充气加压用于静脉血栓栓塞症预防的中国专家共识解读
- 认知障碍患者日常护理查房
- 2025年水域救援题库
- 无人机系统应用技术专业教学标准(高等职业教育本科)2025修订
- 人工流产并发症
- 护理人员体验患者:角色互换与共情实践
评论
0/150
提交评论