




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市西青区数学九年级第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知二次函数yax22ax3a23(其中x是自变量),当x2时,y随x的增大而增大,且3x0时,y的最大值为9,则a的值为().A.1或 B.或 C. D.12.在,,,则的值是()A. B. C. D.3.一元二次方程的两个根为,则的值是()A.10 B.9 C.8 D.74.计算的结果等于()A.-6 B.6 C.-9 D.95.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为,则根据题意可列方程为()A. B.C. D.7.把抛物线y=﹣x2向右平移1个单位,再向下平移2个单位,所得抛物线是()A.y=(x﹣1)+2 B.y=﹣(x﹣1)+2C.y=﹣(x+1)+2 D.y=﹣(x﹣1)﹣28.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°9.下列几何图形中,是中心对称图形但不是轴对称图形的是()A.圆 B.正方形 C.矩形 D.平行四边形10.如图是一根电线杆在一天中不同时刻的影长图,试按其天中发生的先后顺序排列,正确的是()A.①②③④ B.④①③② C.④②③① D.④③②①二、填空题(每小题3分,共24分)11.如图,AD与BC相交于点O,如果,那么当的值是_____时,AB∥CD.12.如图,在平面直角坐标系中,,则经过三点的圆弧所在圆的圆心的坐标为__________;点坐标为,连接,直线与的位置关系是___________.13.如图,tan∠1=____________.14.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是______.15.一辆汽车在行驶过程中,路程(千米)与时间(小时)之间的函数关系如图所示.当时,关于的函数解析式为,那么当时,关于的函数解析式为________.16.若,,,则的度数为__________17.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,若,则阴影部分图形的周长为______结果保留.18.如图,在▱ABCD中,点E在DC边上,若,则的值为_____.三、解答题(共66分)19.(10分)实验探究:如图,和是有公共顶点的等腰直角三角形,,交于、点.(问题发现)(1)把绕点旋转到图,、的关系是_________(“相等”或“不相等”),请直接写出答案;(类比探究)(2)若,,把绕点旋转,当时,在图中作出旋转后的图形,并求出此时的长;(拓展延伸)(3)在(2)的条件下,请直接写出旋转过程中线段的最小值为_________.20.(6分)如图1,在△ABC中,∠BAC=90°,AB=AC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角△AEF,使∠EAF=90°,连接BF交CD的延长线于点P.(1)探索:CE与BF有何数量关系和位置关系?并说明理由;(2)如图2,若AB=2,AE=1,把△AEF绕点A顺时针旋转至△AE'F′,当∠E′AC=60°时,求BF′的长.21.(6分)如图,AB是⊙O的直径,点C是⊙O上一点(点C不与A,B重合),连接CA,CB.∠ACB的平分线CD与⊙O交于点D.(1)求∠ACD的度数;(2)探究CA,CB,CD三者之间的等量关系,并证明;(3)E为⊙O外一点,满足ED=BD,AB=5,AE=3,若点P为AE中点,求PO的长.22.(8分)如图,已知AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,且∠BAD=80°,求∠DAC的度数.23.(8分)我市某校准备成立四个活动小组:.声乐,.体育,.舞蹈,.书画,为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了名学生,扇形统计图中的值是;(2)请补全条形统计图;(3)喜爱“书画”的学生中有两名男生和两名女生表现特别优秀,现从这4人中随机选取两人参加比赛,请用列表或画树状图的方法求出所选的两人恰好是一名男生和一名女生的概率.24.(8分)(1)解方程:.(2)计算:.25.(10分)下面是小华同学设计的“作三角形的高线”的尺规作图的过程.已知:如图1,△ABC.求作:AB边上的高线.作法:如图2,①分别以A,C为圆心,大于长为半径作弧,两弧分别交于点D,E;②作直线DE,交AC于点F;③以点F为圆心,FA长为半径作圆,交AB的延长线于点M;④连接CM.则CM为所求AB边上的高线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形;(2)完成下面的证明:证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.∴AC是⊙F的直径.∴∠AMC=______°(___________________________________)(填依据),∴CM⊥AB.即CM就是AB边上的高线.26.(10分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由3x0时时,y的最大值为9,可得x=-3时,y=9,即可求出a.【题目详解】∵二次函数yax22ax3a23(其中x是自变量),∴对称轴是直线,∵当x⩾2时,y随x的增大而增大,∴a>0,∵3x0时,y的最大值为9,又∵a>0,对称轴是直线,,∴在x=-3时,y的最大值为9,∴x=-3时,,∴,∴a=1,或a=−2(不合题意舍去).故选D.【题目点拨】此题考查二次函数的性质,解题关键在于掌握二次函数的基本性质即可解答.2、B【分析】根据互余两角三角函数的关系:sin2A+sin2B=1解答.【题目详解】∵在Rt△ABC中,∠C=90,∴∠A+∠B=90,∴sin2A+sin2B=1,sinA>0,∵sinB=,∴sinA==.故选B.【题目点拨】本题考查互余两角三角函数的关系.3、D【分析】利用方程根的定义可求得,再利用根与系数的关系即可求解.【题目详解】为一元二次方程的根,,.根据题意得,,.故选:D.【题目点拨】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系,是解题的关键.4、D【分析】根据有理数乘方运算的法则计算即可.【题目详解】解:,故选:D.【题目点拨】本题考查了有理数的乘方,掌握运算法则是解题的关键.5、D【分析】根据轴对称图形与中心对称图形的定义即可判断.【题目详解】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;C是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,故选D.【题目点拨】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.6、B【分析】根据2019年的产量=2017年的产量×(1+年平均增长率)2,即可列出方程.【题目详解】解:根据题意可得,2018年的产量为50(1+x),
2019年的产量为50(1+x)(1+x)=50(1+x)2,
即所列的方程为:50(1+x)2=1.
故选:B.【题目点拨】此题主要考查了一元二次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程.7、D【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【题目详解】抛物线y=﹣x1向右平移1个单位,得:y=﹣(x﹣1)1;再向下平移1个单位,得:y=﹣(x﹣1)1﹣1.故选:D.【题目点拨】此题主要考查了二次函数与几何变换,正确记忆平移规律是解题关键.8、A【解题分析】试题分析:∵弧长,∴圆心角.故选A.9、D【分析】根据中心对称图形和轴对称图形的定义逐一判断即可.【题目详解】A.圆是中心对称图形,也是轴对称图形,故本选项不符合题意;B.正方形是中心对称图形,也是轴对称图形,故本选项不符合题意;C.矩形是中心对称图形,也是轴对称图形,故本选项不符合题意;D.平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意.故选D.【题目点拨】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的定义是解决此题的关键.10、B【分析】北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.【题目详解】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北−北−东北−东,即④①③②故选:B.【题目点拨】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.二、填空题(每小题3分,共24分)11、【分析】如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,据此可得结论.【题目详解】,当时,,.故答案为.【题目点拨】本题主要考查了平行线分线段成比例定理,解题时注意:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.12、(2,0)相切【分析】由网格容易得出AB的垂直平分线和BC的垂直平分线,它们的交点即为点M,根据图形即可得出点M的坐标;由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.【题目详解】解:如图,作线段AB,CD的垂直平分线交点即为M,由图可知经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).
连接MC,MD,
∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,
又∵MC为半径,
∴直线CD是⊙M的切线.故答案为:(2,0);相切.【题目点拨】本题考查的直线与圆的位置关系,圆的切线的判定等知识,在网格和坐标系中巧妙地与圆的几何证明有机结合,较新颖.13、【分析】由圆周角定理可知∠1=∠2,再根据锐角三角函数的定义即可得出结论.【题目详解】解:∵∠1与∠2是同弧所对的圆周角,故答案为【题目点拨】本题考查的是圆周角定理,熟知同弧所对的圆周角相等是解答此题的关键.14、【解题分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【题目详解】解:将-1、-2、-3分别填入三个空,共有3×2×1=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为.故答案为.【题目点拨】本题考查概率的求法与运用.一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.15、【分析】将x=1代入得出此时y的值,然后设当1≤x≤2时,y关于x的函数解析式为y=kx+b,再利用待定系数法求一次函数解析式即可.【题目详解】解:∵当时0≤x≤1,y关于x的函数解析式为y=1x,
∴当x=1时,y=1.
又∵当x=2时,y=11,
设当1<x≤2时,y关于x的函数解析式为y=kx+b,将(1,1),(2,11)分别代入解析式得,,解得,所以,当时,y关于x的函数解析式为y=100x-2.故答案为:y=100x-2.【题目点拨】本题考查了一次函数的应用,主要利用了一次函数图象上点的坐标特征,待定系数法求一次函数解析式,比较简单.16、【分析】先根据三角形相似求,再根据三角形内角和计算出的度数.【题目详解】解:如图:∵∠A=50°,,
∴∵,
∴
故答案为.【题目点拨】本题考查了相似三角形的性质:相似三角形的对应角相等.17、+1.【题目详解】解:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴==•πAB=,∴C阴影=++BC=+1.故答案为+1.18、【分析】由DE、EC的比例关系式,可求出EC、DC的比例关系;由于平行四边形的对边相等,即可得出EC、AB的比例关系,易证得∽,可根据相似三角形的对应边成比例求出BF、EF的比例关系.【题目详解】解:,;四边形ABCD是平行四边形,,;∽;;,.故答案为:.【题目点拨】此题主要考查了平行四边形的性质以及相似三角形的判定和性质.灵活利用相似三角形性质转化线段比是解题关键.三、解答题(共66分)19、(1)相等;(2)或;(3)1.【分析】(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;
(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到,进而得到PD=;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=;
(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小.【题目详解】(1)∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,
∴BA=CA,DA=EA,∠BAC-∠DAC=∠DAE-∠DAC即∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),
∴BD=CE;
故答案为:相等.
(2)作出旋转后的图形,若点C在AD上,如图2所示:
∵∠EAC=90°,
∴CE=,
∵∠PDA=∠AEC,∠PCD=∠ACE,
∴△PCD∽△ACE,
∴,即
∴PD=
若点B在AE上,如图2所示:
∵∠BAD=90°,
∴Rt△ABD中,,BE=AE−AB=2,
∵∠ABD=∠PBE,∠BAD=∠BPE=90°,
∴△BAD∽△BPE,
∴,即,
解得PB=,
∴PD=BD+PB=,
综上可得,PD的长为或.
(2)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小
在Rt△PED中,PD=DE⋅sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.
当小三角形旋转到图中△ACB的位置时,
在Rt△ACE中,CE=,
在Rt△DAE中,DE=,
∵四边形ACPB是正方形,
∴PC=AB=3,
∴PE=3+4=7,
在Rt△PDE中,PD=,
即旋转过程中线段PD的最小值为1.【题目点拨】本题考查了旋转与圆的综合问题,熟练掌握旋转的性质,全等三角形的判定与性质,圆的切线是解题的关键.20、(1)CE=BF,CE⊥BF,理由见解析;(2)【分析】(1)由“SAS”可证△AEC≌△AFB,可得CE=BF,∠ABF=∠ACE,进而可得CE⊥BF;(2)过点E'作E'H⊥AC,连接E'C,由直角三角形的性质和勾股定理可求E'C的长,由“SAS”可证△F'AB≌△E'AC,可得BF'=CE'=.【题目详解】(1)CE=BF,CE⊥BF,理由如下:∵∠BAC=∠EAF=90°,∴∠EAC=∠FAB,又∵AE=AF,AB=AC,∴△AEC≌△AFB(SAS)∴CE=BF,∠ABF=∠ACE,∵∠ADC=∠BDP,∴∠BPD=∠CAD=90°,∴CE⊥BF;(2)过点E'作E'H⊥AC,连接E'C,∵把△AEF绕点A顺时针旋转至△AE'F′,∴AF=AE=AE'=AF'=1,∠BAF'=∠E'AC=60°,∵∠E'AC=60°,∠AHE'=90°,∴∠AE'H=30°,∴AH=AE'=,E'H=AH=,∴HC=AC﹣AH=,∴E'C==,∵AF'=AE',∠F'AB=∠E'AC=60°,AB=AC,∴△F'AB≌△E'AC(SAS)∴BF'=CE'=.【题目点拨】本题主要考查勾股定理和三角形全等的判定和性质定理,旋转的性质,添加辅助线,构造直角三角形,是解题的关键.21、(1)∠ACD=45°;(2)BC+AC=CD,见解析;(3)OP=.【分析】(1)由圆周角的定义可求∠ACB=90°,再由角平分线的定义得到∠ACD=45°;(2)连接CO延长与圆O交于点G,连接DG、BG,延长DG、CB交于点F;先证明△BGF是等腰直角三角形,得到BG=BF,AG=BF,再证明△CDF是等腰三角三角形,得到CF=CD,即可求得BC+AC=CD;(3)过点A作AM⊥ED,过点B作BN⊥ED交ED延长线与点N,连接BE;先证明Rt△AMD≌Rt△DNB(AAS),再证明△AED是等腰三角形,分别求得EN=,BN=,在Rt△EBN中,BE=,OP=BN=.【题目详解】解:(1)∵AB是直径,点C在圆上,∴∠ACB=90°,∵∠ACB的平分线CD与⊙O交于点D,∴∠ACD=45°;(2)BC+AC=CD,连接CO延长与圆O交于点G,连接DG、BG,延长DG、CB交于点F;∴∠CDG=∠CBG=90°,∵∠ACB=90°,∴AC∥BG,∴∠CGB=∠ACG,∴∠CGB=45°+∠DCG,∵∠CBF=90°+∠DCG,∴∠BGF=45°,∴△BGF是等腰直角三角形,∴BG=BF,∵△ACO≌△BGO(SAS),∴AG=BF,∵△CDF是等腰三角三角形,∴CF=CD,∴BC+AC=CD;(3)过点A作AM⊥ED,过点B作BN⊥ED交ED延长线与点N,连接BE;∵∠ACD=∠ABD=45°,∠ADB=90°,∴AD=BD,∵AB=5,∴BD=AD=,∵∠MAD=∠BDN,∴Rt△AMD≌Rt△DNB(AAS),∴AM=DN,MD=BN,∵ED=BD,∴△AED是等腰三角形,∵AE=3,∴AM=,DM=,∴EN=,BN=,在Rt△EBN中,BE=,∵P是AE的中点,O是AB的中点,∴OP=BN,∴OP=.【题目点拨】本题是一道关于圆的综合题目,考查了等腰三角形的性质、圆周角定义、角平分线、全等三角形的判定及性质,勾股定理等多个知识点,根据题目作出适合的辅助线是解此题的关键.22、40°【解题分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠DAC=∠CAO,得到答案.【题目详解】如图:连接OC,∵CD是⊙O的切线,∴OC⊥CD,又∵AD⊥CD,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠DAC=∠CAO=∠BAD=40°,【题目点拨】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.23、(1)50,32;(2)见解析;(3)【解题分析】(1)根据D组的人数及占比即可求出本次抽样调查共抽查的人数,故可求出m的值;(2)用调查总人数减去各组人数即可求出B组人数,再补全条形统计图;(3)根据题意列出树状图,再根据概率公式即可求解.【题目详解】解:(1),所以本次抽样调查共抽查了50名学生,,即;故答案为50,32;(2)B组的人数为(人),全条形统计图为:(3)画树状图为:共有12种等可能的结果数,其中所选的两人恰好是一名男生和一名女生的结果数为8,所以所选的两人恰好是一名男生和一名女生的概率.【题目点拨】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的样本容量.24、(1),;(2)【分析】(1)先提取公因式分解因式分为两个一元一次方程解出即可得到答案;(2)先计算特殊角的三角函数值,再计算加减即可.【题目详解】(1)解:,∴或,∴,.(2)解:原式.【题目点拨】本题考查了解一元二次方程-因式分解法、特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题的关键,注意不要混淆各特殊角的三角函数值.25、(1)补图见解析;(2)90,直径所对的圆周角是直角.【分析】(1)根据要求作出图形即可.
(2)根据线段的垂直平分线的性质以及圆周角定理证明即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小红书美妆品牌账号运营与美妆沙龙服务合同
- 矿山安全劳务派遣服务及责任保障合同
- 文化旅游融合发展补充协议
- 网红炸鸡品牌形象使用权许可合同
- 智能仓储设备安装与仓储信息化升级服务合同
- 金融信贷资产证券化风险控制补充协议
- 创新型科技公司股权价值重估及调整合作协议
- 海外代购商品价格波动风险分担合同
- 胃肠肿瘤病例多学科讨论
- 肾绞痛的治疗
- 难点02:总集篇·十六种阴影部分面积法专项练习-2024年小升初数学典型例题系列(解析版)2
- 2024年国家大剧院招聘真题
- 2025年四川省绵阳市富乐学校中考模拟英语试题(含答案)
- 文化产业发展的试题及答案
- 2025年教育信息化2.0背景下教师跨学科教学能力培养模式创新与优化
- 2025猪蓝耳病防控及净化指南(第三版)
- 2025-2030全球及中国协作机器人系统行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025年全国保密教育线上培训考试试题库含完整答案(各地真题)附答案详解
- 财务公司调账合同协议
- 2025年中考地理热点素材题(含答案)
- 【MOOC】中医与辨证-暨南大学 中国大学慕课MOOC答案
评论
0/150
提交评论