2024届湖北省孝感汉川市数学九年级第一学期期末考试模拟试题含解析_第1页
2024届湖北省孝感汉川市数学九年级第一学期期末考试模拟试题含解析_第2页
2024届湖北省孝感汉川市数学九年级第一学期期末考试模拟试题含解析_第3页
2024届湖北省孝感汉川市数学九年级第一学期期末考试模拟试题含解析_第4页
2024届湖北省孝感汉川市数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省孝感汉川市数学九年级第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,⊙O的半径为4,点A为⊙O上一点,OD⊥弦BC于点D,OD=2,则∠BAC的度数是().A.55° B.60° C.65° D.70°2.如图,二次函数的图象,则下列结论正确的是()①;②;③;④A.①②③ B.②③④ C.①③④ D.①②③④3.用配方法解一元二次方程,变形后的结果正确的是()A. B. C. D.4.-2019的相反数是()A.2019 B.-2019 C. D.5.如图,两条直线被三条平行线所截,若,则()A. B. C. D.6.一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程有实数根的概率是()A. B. C. D.7.某公司为调动职工工作积极性,向工会代言人提供了两个加薪方案,要求他从中选择:方案一:是12个月后,在年薪20000元的基础上每年提高500元(第一年年薪20000元);方案二:是6个月后,在半年薪10000元的基础上每半年提高125元(第6个月末发薪水10000元);但不管是选哪一种方案,公司都是每半年发一次工资,如果你是工会代言人,认为哪种方案对员工更有利?()A.方案一 B.方案二C.两种方案一样 D.工龄短的选方案一,工龄长的选方案二8.如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A.10米 B.15米 C.25米 D.30米9.下列图形中不是中心对称图形的是()A. B. C. D.10.关于x的一元二次方程x2+2x﹣a=0的一个根是1,则实数a的值为()A.0 B.1 C.2 D.3二、填空题(每小题3分,共24分)11.我区某校举行冬季运动会,其中一个项目是乒乓球比赛,比赛为单循环制,即所有参赛选手彼此恰好比赛一场.记分规则是:每场比赛胜者得3分、负者得0分、平局各得1分.赛后统计,所有参赛者的得分总知为210分,且平局数不超过比赛总场数的,本次友谊赛共有参赛选手__________人.12.如图,在中,是斜边的垂直平分线,分别交于点,若,则______.13.关于x的一元二次方程x2+mx+3=0的一个根是2,则m的值为________.14.已知关于x的方程的一个根是1,则k的值为__________.15.圆锥侧面积为32πcm2,底面半径为4cm,则圆锥的母线长为____cm.16.阅读材料:一元二次方程的两个根是-2,3,画出二次函数的图象如图,位于轴上方的图象上点的纵坐标满足,所以不等式点的横坐标的取值范围是,则不等式解是.仿照例子,运用上面的方法解不等式的解是___________.17.将矩形纸片ABCD按如下步骤进行操作:(1)如图1,先将纸片对折,使BC和AD重合,得到折痕EF;(2)如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是_____.18.如图,在矩形中,,点在边上,,则BE=__________;若交于点,则的长度为________.三、解答题(共66分)19.(10分)如图,点F为正方形ABCD内一点,△BFC绕点B逆时针旋转后与△BEA重合(1)求△BEF的形状(2)若∠BFC=90°,说明AE∥BF20.(6分)某班级元旦晚会上,有一个闯关游戏,在一个不透明的布袋中放入3个乒乓球,除颜色外其它都相同,它们的颜色分别是绿色、黄色和红色.搅均后从中随意地摸出一个乒乓球,记下颜色后放回,搅均后再从袋中随意地摸出一个乒乓球,如果两次摸出的球的颜色相同,即为过关.请用画树状图或列表法求过关的概率.21.(6分)如图,∠MAN=90°,,分别为射线,上的两个动点,将线段绕点逆时针旋转到,连接交于点.(1)当∠ACB=30°时,依题意补全图形,并直接写出的值;(2)写出一个∠ACB的度数,使得,并证明.22.(8分)阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2),分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为,求k的值.(3)点B在x轴上,以B为圆心,为半径画⊙B,若直线y=x+3与⊙B的“最美三角形”的面积小于,请直接写出圆心B的横坐标的取值范围.23.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求CD的长.24.(8分)已知抛物线y=ax2+2x﹣(a≠0)与y轴交于点A,与x轴的一个交点为B.(1)①请直接写出点A的坐标;②当抛物线的对称轴为直线x=﹣4时,请直接写出a=;(2)若点B为(3,0),当m2+2m+3≤x≤m2+2m+5,且am<0时,抛物线最低点的纵坐标为﹣,求m的值;(3)已知点C(﹣5,﹣3)和点D(5,1),若抛物线与线段CD有两个不同的交点,求a的取值范围.25.(10分)天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B测得仰角为60°,已知AB=20米,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果精确到0.1米)26.(10分)图1,图2分别是一滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿与斜坡垂直,大腿与斜坡平行,且三点共线,若雪仗长为,,,求此刻运动员头部到斜坡的高度(精确到)(参考数据:)

参考答案一、选择题(每小题3分,共30分)1、B【分析】首先连接OB,由OD⊥BC,根据垂径定理,可得∠BOC=2∠DOC,又由OD=1,⊙O的半径为2,易求得∠DOC的度数,然后由勾股定理求得∠BAC的度数.【题目详解】连接OB,∵OD⊥BC,∴∠ODC=90°,∵OC=2,OD=1,∴cos∠COD=,∴∠COD=60°,∵OB=OC,OD⊥BC,∴∠BOC=2∠DOC=120°,∴∠BAC=∠BOC=60°.故选B.【题目点拨】此题考查圆周角定理、垂径定理,解题关键在于利用圆周角定理得出两角之间的关系.2、B【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【题目详解】∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故④正确;∵0<−<1,∴b>0,故①错误;当x=−1时,y=a−b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2−4ac>0,故②正确正确的有3个,故选:C.【题目点拨】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).3、B【解题分析】根据配方法解一元二次方程即可求解.【题目详解】,∴,∴,故选:B.【题目点拨】本题考查了配方法解一元二次方程,解决本题的关键是方程两边同时加上一次项系数一半的平方.4、A【分析】根据只有符号不同的两个数是互为相反数解答即可.【题目详解】解:-1的相反数是1.故选A.【题目点拨】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.5、D【解题分析】先根据平行线分线段成比例定理求出DF的长,然后可求出BF的长.【题目详解】,,即,解得,,,故选:.【题目点拨】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.6、A【题目详解】解:列表如下:

-214-2---(1,-2)(4,-2)1(-2,1)---(4,1)4(-2,4)(1,4)---所有等可能的情况有6种,其中满足关于x的方程x2+px+q=0有实数根,即满足p2-4q≥0的情况有4种,则P(满足方程的根)=故选:A.7、B【分析】根据题意分别计算出方案一和方案二的第n年的年收入,进行大小比较,从而得出选项.【题目详解】解:第n年:方案一:12个月后,在年薪20000元的基础上每年提高500元,第一年:20000元第二年:20500元第三年:21000元第n年:20000+500(n-1)=500n+19500元,方案二:6个月后,在半年薪10000元的基础上每半年提高125元,第一年:20125元第二年:20375元第三年:20625元第n年:10000+250(n-1)+10000+250(n-1)+125=500n+19625元,由此可以看出方案二年收入永远比方案一,故选方案二更划算;故选B.【题目点拨】本题考查方案选择,解题关键是准确理解题意根据题意列式比较方案间的优劣进行分析.8、B【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度.【题目详解】解:如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故选B.【题目点拨】本题主要利用定理--在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.9、B【分析】在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【题目详解】A、C、D都是中心对称图形;不是中心对称图形的只有B.故选B.【题目点拨】本题属于基础应用题,只需学生熟知中心对称图形的定义,即可完成.10、D【分析】方程的解就是能使方程左右两边相等的未知数的值,把x=1代入方程,即可得到一个关于a的方程,即可解得实数a的值;【题目详解】解:由题可知,一元二次方程x2+2x﹣a=0的一个根是1,将x=1代入方程得,,解得a=3;故选D.【题目点拨】本题主要考查了一元二次方程的解,掌握一元二次方程的解是解题的关键.二、填空题(每小题3分,共24分)11、2【分析】所有场数中,设分出胜负有x场,平局y场,可知分出胜负的x场里,只有胜利一队即3分,总得分为3x;平局里两队各得1分,总得分为2y;所以有3x+2y=1.又根据“平局数不超过比赛场数的”可求出x与y之间的关系,进而得到满足的9组非负整数解.又设有a人参赛,每人要与其余的(a-1)人比赛,即共a(a-1)场,但这样每两人之间是比赛了两场的,所以单循环即场,即=x+y,找出x与y的9组解中满足关于a的方程有正整数解,即求出a的值.【题目详解】设所有比赛中分出胜负的有x场,平局y场,得:由①得:2y=1-3x由②得:2y≤x∴1-3x≤x解得:x≥,∵x、y均为非负整数∴,,,……,设参赛选手有a人,得:=x+y化简得:a2-a-2(x+y)=0∵此关于a的一元二次方程有正整数解∴△=1+8(x+y)必须为平方数由得:1+8×(54+24)=625,为25的平方∴解得:a1=-12(舍去),a2=2∴共参赛选手有2人.故答案为:2.【题目点拨】本题考查了二元一次方程的应用,一元一次不等式的应用,一元二次方程的应用.由于要求的参赛人数与条件给出的等量关系没有直接联系,故可大胆多设个未知数列方程或不等式,再逐步推导到要求的方向.12、2【分析】连接BF,根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,再根据等边对等角的性质求出∠ABF=∠A,然后根据三角形的内角和定理求出∠CBF,再根据三角函数的定义即可求出CF.【题目详解】如图,连接BF,

∵EF是AB的垂直平分线,

∴AF=BF,

∴,,在△BCF中,∴,∴.故答案为:.【题目点拨】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角函数的定义,熟记性质并作出辅助线是解题的关键.13、-【分析】把x=2代入原方程可得关于m的方程,解方程即可求出m的值.【题目详解】解:当x=2时,,解得:m=﹣.故答案为:﹣.【题目点拨】本题考查了一元二次方程的解的定义,属于基础题型,熟知一元二次方程解的概念是关键.14、-1【分析】根据一元二次方程的定义,把x=1代入方程得关于的方程,然后解关于的方程即可.【题目详解】解:把x=1代入方程,得:1+k+3=0,解得:k=-1,故答案为:-1.【题目点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15、8【分析】根据扇形的面积公式计算即可.【题目详解】设圆锥的母线长为,则:,解得:,故答案为:.【题目点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.16、【分析】根据题意可先求出一元二次方程的两个根是1,3,画出二次函数的图象,位于轴上方的图象上点的纵坐标满足,即可得解.【题目详解】解:根据题意可得出一元二次方程的两个根是1,3,画出二次函数的图象如下图,因此,不等式的解是.故答案为:.【题目点拨】本题考查的知识点是二次函数与不等式的解,理解题意,找出求解的步骤是解此题的关键.17、【分析】根据折叠的性质得到BE=AB,根据矩形的性质得到AB=CD,△BOE∽△DOC,再根据相似三角形的性质即可求解.【题目详解】解:由折叠的性质得到BE=AB,∵四边形ABCD是矩形,∴AB=CD,△BOE∽△DOC,∴△BOE与△DOC的相似比是,∴点O到边AB的距离与点O到边CD的距离的比值是.故答案为:.【题目点拨】本题考查了翻折变换(折叠问题)、矩形的性质、相似三角形的判定与性质等知识,综合性强,还考查了操作、推理、探究等能力,是一道好题.18、5【分析】根据矩形的性质得出∠DAE=∠AEB,再由AB和∠DAE的正切值可求出BE,利用勾股定理计算出AE的长,再证明△ABE∽△FEA,根据相似三角形的性质可得,代入相应线段的长可得EF的长,再在在Rt△AEF中里利用勾股定理即可算出AF的长,进而得到DF的长.【题目详解】解:∵点在矩形的边上,∴,∴.在中,,∴,∴.∵∴△ABE∽△FEA,∴,即,解得.∵.∴.【题目点拨】此题主要考查了相似三角形的判定与性质,以及勾股定理的应用,关键是掌握相似三角形的判定方法和性质定理.相似三角形对应边的比相等,两个角对应相等的三角形相似.三、解答题(共66分)19、(1)等腰直角三角形(2)见解析【分析】(1)利用正方形的性质得BA=BC,∠ABC=90°,然后根据旋转的定义可判断旋转中心为点B,旋转角为90°,根据旋转的性质得∠EBF=∠ABC=90°,BE=BF,则可判断△BEF为等腰直角三角形;(2)根据旋转的性质得∠BEA=∠BFC=90°,从而根据平行线的判定方法可判断AE∥BF.【题目详解】(1)△BEF为等腰直角三角形,理由如下:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,∵△BFC逆时针旋转后能与△BEA重合,∴旋转中心为点B,∠CBA为旋转角,即旋转角为90°;∵△BFC逆时针旋转后能与△BEA重合,∴∠EBF=∠ABC=90°,BE=BF,∴△BEF为等腰直角三角形;(2)∵△BFC逆时针旋转后能与△BEA重合,∴∠BEA=∠BFC=90°,∴∠BEA+∠EBF=180°,∴AE∥BF.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.20、.【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果.【题目详解】解:画树状图如下:共有9种等可能的结果数,其中两次摸出的球的颜色相同的结果数为3,所以过关的概率是=.【题目点拨】本题的考点是树状图法.方法是根据题意画出树状图,由树状图得出答案.21、(1);(2)∠.【分析】(1)按照题意补全图形即可,由已知可证△∽△,再由相似三角形的性质可知,从而可得答案;(2)过点作于点,由已知可证△∽△,从而有,再利用∠ACB的度数可求出,从而可得出答案.【题目详解】解:(1)正确补全图形;∵∴△∽△∴∵∴.(2)解:∠.证明:∵,∴.∵,∴.过点作于点,∴∵,∴.∵,∴.∵∠.∴△∽△.∴.【题目点拨】本题主要考查相似三角形的判定及性质,掌握旋转的性质及相似三角形的判定是解题的关键.22、(1)②;(2)±1;(3)<<或<<【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【题目详解】(1)如下图所示:∵PM是⊙O的切线,∴∠PMO=90°,当⊙O的半径OM是定值时,,∵,∴要使面积最小,则PM最小,即OP最小即可,当OP⊥时,OP最小,符合最美三角形定义.故在图1三个三角形中,因为AO⊥x轴,故△AOP为⊙A与x轴的最美三角形.故选:②.(2)①当k<0时,按题意要求作图并在此基础作FM⊥x轴,如下所示:按题意可得:△AEF是直线y=kx与⊙A的最美三角形,故△AEF为直角三角形且AF⊥OF.则由已知可得:,故EF=1.在△AEF中,根据勾股定理得:.∵A(0,2),即OA=2,∴在直角△AFO中,,∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F点代入y=kx可得:.②当k>0时,同理可得k=1.故综上:.(3)记直线与x、y轴的交点为点D、C,则,,①当⊙B在直线CD右侧时,如下图所示:在直角△COD中,有,,故,即∠ODC=60°.∵△BMN是直线与⊙B的最美三角形,∴MN⊥BM,BN⊥CD,即∠BND=90°,在直角△BDN中,,故.∵⊙B的半径为,∴.当直线CD与⊙B相切时,,因为直线CD与⊙B相离,故BN>,此时BD>2,所以OB=BD-OD>.由已知得:<,故MN<1.在直角△BMN中,<,此时可利用勾股定理算得BD<,<=,则<<.②当⊙B在直线CD左侧时,同理可得:<<.故综上:<<或<<.【题目点拨】本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.23、(1)详见解析;(2)2【分析】(1)连接OD,证明∠ODB+∠ADC=90°,即可得到结论;(2)利用锐角三角函数求出AC=4,再利用锐角三角函数求出CD.【题目详解】(1)连接OD,∵∠C=90°,∠CAD=∠B,∴∠CAD+∠ADC=∠B+∠ADC=90°,∵OD=OB,∴∠ODB=∠B,∴∠ODB+∠ADC=90°,∴∠ADO=90°,即OD⊥AD,∴AD是⊙O的切线;(2)在Rt△ABC中,BC=8,tanB=,∴AC==4,∵∠CAD=∠B,∴,∴CD=2.【题目点拨】此题考查同圆的半径相等的性质,圆的切线的判定定理,利用锐角三角函数解直角三角形,正确理解题意是解题的关键.24、(1)①;②;(2);(1)a>或a<﹣1.【分析】(1)①令x=0,由抛物线的解析式求出y的值,便可得A点坐标;②根据抛物线的对称轴公式列出a的方程,便可求出a的值;(2)把B点坐标代入抛物线的解析式,便可求得a的值,再结合已知条件am<0,得m的取值范围,再根据二次函数的性质结合条件当m2+2m+1≤x≤m2+2m+5时,抛物线最低点的纵坐标为,列出m的方程,求得m的值,进而得出m的准确值;(1)用待定系数法求出CD的解析式,再求出抛物线的对称轴,进而分两种情况:当a>0时,抛物线的顶点在y轴左边,要使抛物线与线段CD有两个不同的交点,则C、D两必须在抛物线上方,顶点在CD下方,根据这一条件列出a不等式组,进行解答;当a<0时,抛物线的顶点在y轴的右边,要使抛物线与线段CD有两个不同的交点,则C、D两必须在抛物线下方,抛物线的顶点必须在CD上方,据此列出a的不等式组进行解答.【题目详解】(1)①令x=0,得,∴,故答案为:;②∵抛物线的对称轴为直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论