版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东青岛城阳区五校联考2024届数学九上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,中,,则的值为()A. B. C. D.2.某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生3.下列图形中,是相似形的是()A.所有平行四边形 B.所有矩形 C.所有菱形 D.所有正方形4.如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1m,则旗杆PA的高度为()A.m B.m C.m D.m5.在△中,∠,如果,,那么cos的值为()A. B.C. D.6.在△ABC中,∠C=90°,则下列等式成立的是()A.sinA= B.sinA= C.sinA= D.sinA=7.某果园2017年水果产量为100吨,2019年水果产量为144吨,则该果园水果产量的年平均增长率为()A.10% B.20% C.25% D.40%8.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)9.一个圆柱和一个正方体按如图所示放置,则其俯视图为()A. B.C. D.10.二次函数图象的顶点坐标是()A. B. C. D.11.如图,四边形ABCD是⊙O的内接四边形,点E在边CD的延长线上,若∠ABC=110°,则∠ADE的度数为()A.55° B.70° C.90° D.110°12.过反比例函数图象上一点作两坐标轴的垂线段,则它们与两坐标轴围成的四边形面积为()A.-6 B.-3 C.3 D.6二、填空题(每题4分,共24分)13.设分别为一元二次方程的两个实数根,则____.14.如图,在⊙O中,,AB=3,则AC=_____.15.超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩/分将创新能力,综合知识和语言表达三项测试成绩按的比例计入总成绩,则该应聘者的总成绩是__________分.16.已知二次函数的图象如图所示,并且关于的一元二次方:有两个不相等的实数根,下列结论:①;②;③;④,其中正确的有__________.17.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径为______寸.18.如图,正五边形ABCDE内接于⊙O,若⊙O的半径为10,则的长为____.三、解答题(共78分)19.(8分)如图,是半圆上的三等分点,直径,连接,垂足为交于点,求的度数和涂色部分的面积.20.(8分)如图,在平行四边形中,、分别为边、的中点,是对角线,过点作交的延长线于点.(1)求证:;(2)若,求证:四边形是菱形.21.(8分)如图,内接于,是的直径,是上一点,弦交于点,弦于点,连接,,且.(1)求证:;(2)若,,求的长.22.(10分)商场某种商品平均每天可销售件,每件盈利元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价元,商场平均每天可多售出件,设每件商品降价元(为正整数).据此规律,请回答:(1)商场日销轡量增加件,每件商品盈利元(用含的代数式表示);(2)每件商品降价多少元时,商场日盈利可达到元;(3)在上述条件不变,销售正常情况下,求商场日盈利的最大值.23.(10分)如图,的直径,点为上一点,连接、.(1)作的角平分线,交于点;(2)在(1)的条件下,连接.求的长.24.(10分)如图,已知△ABC,∠B=90゜,AB=3,BC=6,动点P、Q同时从点B出发,动点P沿BA以1个单位长度/秒的速度向点A移动,动点Q沿BC以2个单位长度/秒的速度向点C移动,运动时间为t秒.连接PQ,将△QBP绕点Q顺时针旋转90°得到△,设△与△ABC重合部分面积是S.(1)求证:PQ∥AC;(2)求S与t的函数关系式,并直接写出自变量t的取值范围.25.(12分)从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,∠A=40°,∠B=60°,当∠BCD=40°时,证明:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD是以AC为底边的等腰三角形,求∠ACB的度数.(3)如图2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割线,△ACD是以CD为底边的等腰三角形,求CD的长.26.如图,中,,是斜边上一个动点,以为直径作交于点,与的另一个交点,连接.(1)当时,①若,求的度数;②求证;(2)当,时,是否存在点,使得是等腰三角形,若存在,求出所有符合条件的的长.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】根据相似三角形的判定和性质,即可得到答案.【题目详解】解:∵,∴∽,∴;故选:D.【题目点拨】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.2、C【分析】根据概率的意义,可知发生地震的概率是,说明发生地震的可能性大于不发生地震的可能性,从而可以解答本题.【题目详解】∵某地质学家预测:在未来的20年内,F市发生地震的概率是,∴未来20年内,F市发生地震的可能性比没有发生地震的可能性大,故选C.【题目点拨】本题主要考查概率的意义,发生地震的概率是,说明发生地震的可能性大于不发生地政的可能性,这是解答本题的关键.3、D【分析】根据对应角相等,对应边成比例的两个多边形相似,依次分析各项即可判断.【题目详解】所有的平行四边形、矩形、菱形均不一定是相似多边形,而所有的正方形都是相似多边形,故选D.【题目点拨】本题是判定多边形相似的基础应用题,难度一般,学生只需熟练掌握特殊四边形的性质即可轻松完成.4、A【解题分析】设PA=PB=PB′=x,在RT△PCB′中,根据sinα=,列出方程即可解决问题.【题目详解】设PA=PB=PB′=x,在RT△PCB′中,sinα=,∴=sinα,∴x-1=xsinα,∴(1-sinα)x=1,∴x=.故选A.【题目点拨】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.5、A【分析】先利用勾股定理求出AB的长度,从而可求.【题目详解】∵∠,,∴∴故选A【题目点拨】本题主要考查勾股定理及余弦的定义,掌握余弦的定义是解题的关键.6、B【解题分析】分析:根据题意画出图形,进而分析得出答案.详解:如图所示:sinA=.故选B.点睛:本题主要考查了锐角三角函数的定义,正确记忆边角关系是解题的关键.7、B【分析】2019年水果产量=2017年水果产量,列出方程即可.【题目详解】解:根据题意得,解得(舍去)故答案为20%,选B.【题目点拨】本题考查了一元二次方程的应用.8、A【解题分析】过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,依据△AOB和△A1OB1相似,且相似比为1:2,即可得到,再根据△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,-4).【题目详解】解:如图,过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,
∵点B的坐标为(-1,2),
∴BC=1,OC=2,
∵△AOB和△A1OB1相似,且相似比为1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,
∴△BOC∽△B1OD,
∴OD=2OC=4,B1D=2BC=2,
∴点B1的坐标为(2,-4),
故选:A.【题目点拨】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.9、D【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【题目详解】解:一个圆柱和一个正方体按如图所示放置,则其俯视图为左边是一个圆,右边是一个正方形.故选:D.【题目点拨】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.10、B【解题分析】根据题目中二次函数的顶点式,可以直接写出该函数的顶点坐标.【题目详解】∵二次函数y=﹣(x+2)2+6,∴该函数的顶点坐标为(﹣2,6),故选:B.【题目点拨】本题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,对称轴是.11、D【解题分析】∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,又∵∠ADC+∠ADE=180°,∴∠ADE=∠ABC=110°.故选D.点睛:本题是一道考查圆内接四边形性质的题,解题的关键是知道圆内接四边形的性质:“圆内接四边形对角互补”.12、D【分析】根据反比例函数的几何意义可知,矩形的面积为即为比例系数k的绝对值,即可得出答案.【题目详解】设B点坐标为(x,y),由函数解析式可知,xy=k=-6,则可知S矩形ABCO=|xy|=|k|=6,故选:D.【题目点拨】本题考查了反比例函数系数k的几何意义,关键是理解图中矩形的面积为即为比例系数k的绝对值.二、填空题(每题4分,共24分)13、-2025【分析】根据一元二次方程根与系数的关系即可得出,,将其代入中即可求出结论.【题目详解】解:,分别为一元二次方程的两个实数根,,,则.故答案为:.【题目点拨】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出,是解题的关键.14、1.【分析】根据圆心角、弧、弦、弦心距之间的关系解答即可.【题目详解】解:∵在⊙O中,,AB=1,
∴AC=AB=1.
故答案为1.【题目点拨】本题考查圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等.15、【题目详解】解:5+3+2=10.,故答案为:77.16、③【分析】①利用可以用来判定二次函数与x轴交点个数,即可得出答案;②根据图中当时的值得正负即可判断;③由函数开口方向可判断的正负,根据对称轴可判断的正负,再根据函数与轴交点可得出的正负,即可得出答案;④根据方程可以看做函数,就相当于函数(a0)向下平移个单位长度,且与有两个交点,即可得出答案.【题目详解】解:①∵函数与轴有两个交点,∴,所以①错误;②∵当时,,由图可知当,,∴,所以②错误;③∵函数开口向上,∴,∵对称轴,,∴,∵函数与轴交于负半轴,∴,∴,所以③正确;④方程可以看做函数当y=0时也就是与轴交点,∵方程有两个不相等的实数根,∴函数与轴有两个交点∵函数就相当于函数向下平移个单位长度∴由图可知当函数向上平移大于2个单位长度时,交点不足2个,∴,所以④错误.正确答案为:③【题目点拨】本题考查了二次函数与系数的关系:可以用来判定二次函数与x轴交点的个数,当时,函数与x轴有2个交点;当时,函数与x轴有1个交点;当时,函数与x轴没有交点.;二次函数系数中决定开口方向,当时,开口向上,当时,开口向下;共同决定对称轴的位置,可以根据“左同右异”来判断;决定函数与轴交点.17、1.【分析】设的半径为,在中,,则有,解方程即可.【题目详解】设的半径为.在中,,则有,解得,∴的直径为1寸,故答案为1.【题目点拨】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18、2π【分析】利用正五边形的性质得出中心角度数,进而利用弧长公式求出即可.【题目详解】解:如图所示:连接OA、OB.∵⊙O为正五边形ABCDE的外接圆,⊙O的半径为10,∴∠AOB==72°,∴的长为:.故答案为:2π.【题目点拨】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.三、解答题(共78分)19、,.【分析】连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到∠AFE=60°;再推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到涂色部分的面积.【题目详解】连接,是半圆上的三等分点,则,,∵,∴,;,∴是等边三角形,,所以.【题目点拨】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键.20、(1)见解析;(2)见解析【分析】(1)根据已知条件证明BE=DF,BE∥DF,从而得出四边形DFBE是平行四边形,即可证明DE∥BF,
(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.【题目详解】证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵点E、F分别是AB、CD的中点,
∴BE=AB,DF=CD.
∴BE=DF,BE∥DF,
∴四边形DFBE是平行四边形,
∴DE∥BF;
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四边形AGBD是矩形,
∴∠ADB=90°,
在Rt△ADB中
∵E为AB的中点,
∴AE=BE=DE,
∵四边形DFBE是平行四边形,
∴四边形DEBF是菱形.【题目点拨】本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,比较综合,难度适中.21、(1)详见解析;(2)【分析】(1)证法一:连接,利用圆周角定理得到,从而证明,然后利用同弧所对的圆周角相等及三角形外角的性质得到,从而使问题得解;证法二:连接,,由圆周角定理得到,从而判定,得到,然后利用圆内接四边形对角互补可得,从而求得,使问题得解;(2)首先利用勾股定理和三角形面积求得AG的长,解法一:过点作于点,利用勾股定理求GH,CH,CD的长;解法二:过点作于点,利用AA定理判定,然后根据相似三角形的性质列比例式求解.【题目详解】(1)证法一:连接.∵为的直径,∴,∴∵,∴∴∴.∵∴∵,∴∴.证法二:连接,.∵为的直径,∴∵∴∴,∴∴∵∴∵∴∴∴∵四边形内接于,∴∴∴∴.(2)解:在中,,,,根据勾股定理得.连接,∵为的直径,∴∴∴∵∴∵∴∴∴四边形是平行四边形.∴.在中,,∴解法一:过点作于点∴在中,,∴在中,∴在中,∴解法二:过点作于点∴∵∴∵∴四边形为矩形∴.∵四边形为平行四边形,∴∴.∵,∴∴即∴【题目点拨】本题考查圆的综合知识,相似三角形的判定和性质,勾股定理解直角三角形,综合性较强,有一定难度.22、(1)2x;(50-x);(2)每件商品降价1元,商场可日盈利2400元;(3)商场日盈利的最大值为2450元.【分析】(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=原来的盈利−降低的钱数;(2)根据日盈利=每件商品盈利的钱数×(原来每天销售的商品件数40+2×降价的钱数),列出方程求解即可;(3)求出(2)中函数表达式的顶点坐标的横坐标即可解决问题.【题目详解】(1)商场日销售量增加2x件,每件商品盈利(50−x)元,故答案为:2x;(50−x);(2)由题意得:(50-x)(40+2x)=2400化简得:x2-30x+10=0,即(x-10)(x-1)=0,解得:x1=10,x2=1,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴x=1.答:每件商品降价1元,商场可日盈利2400元.(3)
y=
(50-x)×(40+2x)
=-2(x-15)2
+2450
当x=15时,y最大值=2450即商场日盈利的最大值为2450元.【题目点拨】此题主要考查了二次函数的应用;得到日盈利的等量关系是解决本题的关键.23、(1)见解析;(2)【分析】(1)以点为圆心,任意长为半径(不大于AC为佳)画弧于AC和BC交于两点,然后以这两个交点为圆心,大于这两点之间距离的一半为半径画两段弧交于一点,过点C和该交点的线就是的角平分线;(2)连接,先根据角平分线的定义得出,再根据圆周角定理得出,最后再利用勾股定理求解即可.【题目详解】解:(1)如图,为所求的角平分线;(2)连接,的直径,,.平分,..在中,.【题目点拨】本题主要考察基本作图、角平分线定义、圆周角定理、勾股定理,准确作出辅助线是关键.24、(1)见解析;(2)【分析】(1)由题意可得出,继而可证明△BPQ∽△BAC,从而证明结论;(2)由题意得出QP`⊥AC,分三种情况利用相似三角形的判定及性质讨论计算.【题目详解】解:(1)∵BP=t,BQ=2t,AB=3,BC=6∴∵∠B=∠B∴△BPQ∽△BAC∴∠BPQ=∠A∴PQ∥AC(2)∵BP=tBQ=2t∴P`Q=∵AB=3BC=6∴AC=3∵PQ∥AC∴QP`⊥AC当0<t≤时,S=t2当<t≤1时:设QP`交AC于点MP`B`交AC于点N∴∠QMC=∠B=90°∴△QMC∽△ABC∴∴∴QM=∵P`Q=t∴P`M=又∵∠P`=∠BPQ=∠A∴△P`NM∽△ACB∴∴MN=2P`M∴S△P`MN=P`M·MN=P`M2=∴当1<t≤3时设QB`交AC于点H∵∠HQM=∠PQB∴△HMQ∽△PBQ∴∴MH=MQ∴综合上所述:【题目点拨】本题是一道关于相似的综合题目,难度较大,涉及的知识点有相似三角形的判定及性质、勾股定理、三角形面积公式、旋转的性质等,需要有数形结合的能力以及较强的计算能力.25、(1)证明见解析;(2)∠ACB=96°;(3)CD的长为-1.【分析】(1)根据三角形内角和定理可求出∠ACB=80°,进而可得∠ACD=40°,即可证明AD=CD,由∠BCD=∠A=40°,∠B为公共角可证明三角形BCD∽△BAC,即可得结论;(2)根据等腰三角形的性质可得∠ACD=∠A=48°,根据相似三角形的性质可得∠BCD=∠A=48°,进而可得∠ACB的度数;(3)由相似三角形的性质可得∠BCD=∠A,由AC=BC=2可得∠A=∠B,即可证明∠BCD=∠B,可得BD=CD,根据相似三角形的性质列方程求出CD的长即可.【题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大通湖区法院公开招聘聘用制司法警务辅助人员备考题库及完整答案详解一套
- 2025年葫芦岛市生态环境局公开遴选工作人员备考题库及答案详解参考
- 黑龙江公安警官职业学院《分子生物学》2025 学年第二学期期末试卷
- 2025年中建二局商务管理部招聘备考题库及答案详解参考
- 2025始兴农商银行社会招聘1人(第二次)备考核心题库及答案解析
- 2026年江西铜业技术研究院有限公司北京分院院长招聘1人备考核心题库及答案解析
- 《跨学科视角下农村初中英语教学资源整合与创新实践》教学研究课题报告
- 2025年镇康县公安局关于公开招聘警务辅助人员5人的备考题库及答案详解参考
- 2025年社区养老驿站服务标准化报告
- 2025年招商银行佛山分行社会招聘备考题库带答案详解
- 2025年榆林市住房公积金管理中心招聘(19人)笔试考试备考题库及答案解析
- 2025年常山县机关事业单位公开招聘编外人员43人笔试考试参考试题及答案解析
- 2025年常州信息职业技术学院单招职业倾向性测试题库附答案
- 2025年云南省人民检察院聘用制书记员招聘(22人)模拟笔试试题及答案解析
- 2025年党的基础知识题库及答案入党理论知识考试试题
- GB/T 38082-2025生物降解塑料购物袋
- 2025年10月自考02275计算机基础与程序设计试题及答案版
- 2026国网宁夏电力有限公司招聘高校毕业生统一考试(第一批)备考题库及答案详解(网校专用)
- 智能教育:科技驱动下的学校革新
- 汉字笔画练习字帖
- 酒店住宿和餐饮行业企业安全风险分级管控清单
评论
0/150
提交评论