武汉小学六年级数学上册解决问题解答应用题专项专题训练带答案解析_第1页
武汉小学六年级数学上册解决问题解答应用题专项专题训练带答案解析_第2页
武汉小学六年级数学上册解决问题解答应用题专项专题训练带答案解析_第3页
武汉小学六年级数学上册解决问题解答应用题专项专题训练带答案解析_第4页
武汉小学六年级数学上册解决问题解答应用题专项专题训练带答案解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

武汉小学六年级数学上册解决问题培优解答应用题专项专题训练带答案解析一、六年级数学上册应用题解答题1.美美服装公司赶制360件演出服。甲组单独做需要8天,乙组单独做需要10天,丙组单独做需要12天。(1)甲、乙两组合作,需要几天完成?(2)如果甲组先完成任务的40%,剩下的任务按分派给乙、丙两组。甲、乙、丙三个组分别做了多少件演出服?解析:(1)天(2)甲:144件乙:120件丙:96件【分析】(1)工作时间=工作总量÷工作效率,工作效率=工作总量÷工作时间,据此解答即可;(2)甲组先完成任务的40%,剩下的任务占60%,求出剩下的任务;剩下的任务按5∶4分派给乙、丙,则乙完成的占剩下任务的九分之五,丙完成的占剩下任务的九分之四。【详解】(1)(天)答:甲、乙两组合作,需要天完成。(2)360×40%=144(件)(件)(件)(件)答:甲、乙、丙三个组分别做了144,120,96件演出服。【点睛】本题考查工程问题、百分数、按比例分配,解答本题的关键是掌握按比例分配解决问题的方法。2.王叔叔12月份接到加工一批零件的任务,他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3,第二周加工了总任务的,已知两周一共加工了140个零件。王叔叔接到的任务是一共要加工多少个零件?解析:240个【分析】根据条件“他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3”可知,第一周完成的占全部任务的=,然后用两周一共加工的零件总个数÷两周一共加工的占总个数的分率=要加工的零件总个数,据此列式解答。【详解】第一周完成了=140÷(+)=140÷=140×=240(个)答:王叔叔接到的任务是一共要加工240个零件。【点睛】题目中不易理解的一句话是“他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3”,我们需要依据比与分数的关系,把它转化成一个表示第一周完成的零件个数占零件总数的分率。3.如图4×4方格纸片内,两面都写着1,2,3,4,…,16(同一位置的格子正反面数字相同),现依下列顺序逐步折叠:(1)上半部往下折叠盖在下半部上;(2)右半部往左折叠盖在左半部上;(3)左半部往右折叠盖在右半部上;(4)下半部往上折叠盖在上半部上。经过上述操作,纸片在最上面的数字是(________)。12345678910111213141516解析:14【分析】(1)上半部往下折叠盖在下半部上,这时上面的数字是1、2、3、4、5、6、7、8;(2)右半部往左折叠盖在左半部上,这时上面的数字是11、12、15、16;(3)左半部往右折叠盖在右半部上,这时上面的数字是9、13;(4)下半部往上折叠盖在上半部上,这时上面的数字是14,据此解答即可。【详解】纸片在最上面的数字是14;【点睛】解答本题时可以进行实践,得出结果。4.一张正方形桌子可以围坐4人,同学们吃饭时把正方形桌子拼成一排,每张不留空位.(如图所示)(1)20人吃饭需要多少张桌子拼在一起才能正好坐下?(2)10张桌子这样拼成一排,可坐多少人?(3)发现规律.多摆1个□,就多出2个〇.如果有n个□,那么一共有2+个〇.解析:(1)9张(2)22人(3)2n【详解】(1)1张桌子可坐人数:4人2张桌子可坐人数:4+2=6(人)3张桌子可坐人数:4+2+2=8(人)……n张桌子可坐人数:4+2(n﹣1)=(2n+2)人当能坐20人时,桌子张数:2n+2=202n=18n=9答:20人吃饭需要9张桌子拼在一起才能正好坐下.(2)2×10+2=20+2=22(人)答:10张桌子这样拼成一排,可坐22人.(3)发现规律:多摆1个□,就多出2个〇.如果有n个□,那么一共有2+2n个〇.故答案为:2n.5.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第(n是正整数)个图案中由______个基础图形组成.解析:(3n+1)【解析】【详解】略6.一本故事书有180页,小红第一天看了全书的.(1)如果第二天看的相当于第一天的,第二天看了多少页?(2)如果第一天与第二天看的页数比是5:4,第二天看了多少页?(3)如果第二天看了全书的,第二天比第一天多看多少页?解析:(1)25页(2)24页(3)30页【解析】【详解】(1)180××=30×=25(页)答:第二天看了25页.(2)180××=30×=24(页)答:第二天看了24页.(3)180×(﹣)=180×=30(页)答:第二比第一天多看30页.7.聪聪读一本故事书,读完的页数比这本书总页数的还多20页。此时,读完的页数与未读页数的比是,这本书一共有多少页?解析:240页【分析】可设这本书一共有x页,根据读完的页数与未读页数的比是可知,已读的页数是整本书的;据此根据已读的页数又是这本书总页数的还多20页列方程,求解即可。【详解】解:设这本书一共有页。答:这本书一共有240页。【点睛】列方程解应用问题,认真读题,找出等量关系,列出方程是解题关键。8.甲乙两船同时从A码头出发,沿着同一条航线匀速向相距280千米的B码头航行,4小时后导航系统显示两船相距20千米。已知甲船的速度是乙船的87.5%,求甲乙两船的速度。(列方程解答)解析:甲船35千米/时,乙船40千米/时【分析】设乙船速度是x千米/时,则甲船速度是87.5%x千米/时,乙船速度×时间-甲船速度×时间=20千米,列出方程求出乙船速度,乙船速度×87.5%=甲船速度。【详解】解:设乙船速度是x千米/时,则甲船速度是87.5%x千米/时。4x-87.5%x×4=204x-3.5x=200.5x=20x=4040×87.5%=35(千米/时)答:甲船速度是35千米/时,乙船速度是40千米/时。【点睛】用方程解决问题的关键是找到等量关系,整体数量×部分对应百分率=部分数量。9.学校买来一批书,分给高年级后,剩下的按4∶3的比分给中年级和低年级。已知中年级分得240本,这批书一共有多少本?解析:700本【分析】用算出的是分给高年级后剩下的书的本数,420本对应的分率是,所以用可求出这批书一共有多少本。【详解】240÷=420(本)420÷=420÷=700(本)答:这批书一共有700本。【点睛】本题考查按比例分配、分数除法,解答本题的关键是掌握按比例分配解题的方法。10.佳惠超市按商品标价的80%进行促销。光明小学在此超市按促销价购买了200支钢笔,共付2040元。(1)每支钢笔的标价是多少元?(2)如果每支钢笔超市的进价是8.5元,问超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的?解析:(1)12.75元(2)20%【分析】(1)用总价除以钢笔数量,求出每支钢笔售价,再用每支钢笔的售价除以它占原标价的百分率,求出每支钢笔标价;(2)先算出每支钢笔的售价,再用售价比进价多的部分除以进价,求出超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的。【详解】(1)2040÷200÷80%=10.2÷80%=12.75(元)答:每支钢笔的标价是12.75元。(2)(2040÷200-8.5)÷8.5=1.7÷8.5=20%答:超市是在进价基础上加价百分之二十将这200支钢笔卖给光明小学的。【点睛】本题考查百分数,解答本题的关键是理解按80%进行促销是指售价占标价的百分之八十。11.甲乙两车分别从A、B两地同时相对开出,5小时后相遇。相遇后两车仍按原来的速度前进,当它们相距378千米时,甲车行了全程的,乙车行了全程的75%,A、B两地相距多少千米?解析:1080千米【分析】由题可知,甲乙相遇并且拉开378千米的距离,相当于走了一个全程加378米,所以378米占全程的75%+-1,用378÷(75%+-1)即可求出全程。【详解】378÷(75%+-1)=378÷(0.75+0.6-1)=378÷0.35=1080(千米)答:A、B两地相距1080千米。【点睛】解决问题的关键在于求出378米相当于全程的几分之几,用分量÷分率=总量求出全程的长度。12.龙城超市上个星期售出甲、乙两种品牌的饮料箱数如下图.(1)在这个星期中,两种品牌饮料的销售量在哪一天相差最大?(2)甲饮料周日的销售比周一多百分之几?(3)甲饮料这个星期平均每天销售多少箱?乙饮料呢?解析:(1)周二;(2)40%;(3)286箱,270箱【详解】(1)从统计图中看出周二时,两种品牌饮料的销售量相差最大;(2)(350﹣250)÷250=100÷250=40%答:甲饮料周日的销售比周一多40%。(3)(350+250+270+200+230+320+385)÷7=2005÷7≈286(箱)(300+220+200+230+250+320+370)÷7=1890÷7=270(箱)答:甲饮料这个星期平均每天销售约286箱,乙饮料这个星期平均每天销售270箱.13.某地为提倡节约用电,推行“阶梯电价“.其计费规则为:居民用电300度及以内,每度电0.5元;用电超过300度至500度部分,每度电加价10%;用电超过500度部分,每度电加价50%,张阿姨家七月份交了216元电费,这个月她家一共用电多少度?解析:410度【详解】300×0.5=150(元)0.5×(1+10%)=0.6(元)(500﹣300)×0.6=200×0.6=120(元)150+120=270(元)270>216(216﹣150)÷0.6=66÷0.6=110(度)300+110=410(度)答:这个月她家一共用电410度.14.在一次做“有趣的平衡”的综合实践中,小林拿来一根粗细均匀的竹竿,他从左端量到1.2米处做一个记号A,再从右端量到1.2米处做一个记号B。这时,他发现A、B之间的长度恰好是全长的20%,这根竹竿长度可能是多少米?(提示:请试着画图理解,然后列式求得两个不同的答案)解析:2米或3米【分析】方法一:如图所示,这根竹竿的距离小于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1+A、B之间的长度是全长的百分之几);方法二:如图所示,这根竹竿的距离大于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1-A、B之间的长度是全长的百分之几)。【详解】①(1.2+1.2)÷(1+20%)=2(米)②(1.2+1.2)÷(1-20%)=3(米)答:这根竹竿可能是2米或3米。15.观察算式的规律:,,,,……。用含字母的式子表示规律:(________)。用规律计算:(________)。解析:n2−(n−1)2=n+n+1210【分析】观察题目给出的算式,发现前一个数都比后一个数大1,而且前一个数的平方减去后一个数的平方最终等于前数加后数,由此可得到规律。【详解】(1)n2−(n−1)2=n+n+1(2)=20+19+18+17+……+2+1=20×10+10=200+10=210【点睛】本题考查学生的观察能力,找到规律然后利用规律是解题的关键。16.小方桌的边长是1米,把它的四边撑开就成了一张圆桌(如图),圆桌的面积比原来小方桌的面积多多少平方米(即求阴影部分的面积是多少)?解析:57平方米【解析】【分析】如图,连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,且每一条直角边都是圆的半径;一个等腰直角三角形的面积就是正方形面积的,由于正方形的面积是1×1=1平方米,所以一个等腰直角三角形的面积就是平方米,即r2÷2=,可求得r2是,进而求得圆桌的面积,再求出面积差.【详解】连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,如下图:每一条直角边都是圆的半径;正方形的面积:1×1=1(平方米)小等腰直角三角形的面积就是平方米即:r2÷2=,r2=;圆桌的面积:3.14×r2=3.14×=1.57(平方米);1.57﹣1=0.57(平方米);答:圆桌的面积比原来小方桌的面积多0.57平方米.17.三角形的三条边都是6厘米,高为5.2厘米,分别以、、三点为圆心,6厘米长为半径画弧,求这三段弧所围成的图形的面积。(取3.14)解析:32平方厘米【分析】根据题干三角形ABC是等边三角形,所以每个角的度数都是60°,那么图中就出现了3个半径为6厘米,圆心角为60°的扇形;这三段弧所围成的图形的面积=三个扇形的面积之和﹣2个等边三角形的面积,由此利用扇形的面积公式和三角形的面积公式即可解决问题。【详解】一个小扇形的面积是:×3.14×62=×3.14×36=18.84(平方厘米)等边三角形的面积为:6×5.2÷2=15.6(平方厘米)这三段弧所围成的图形的面积是:18.84×3﹣15.6×2=56.52﹣31.2=25.32(平方厘米)答:这三段弧所围成的图形的面积是25.32平方厘米。【点睛】此题考查了扇形的面积公式与三角形的面积公式的灵活应用,根据题干,将这个组合图形的面积问题转化成求扇形和三角形的面积问题是解决本题的关键。18.甲、乙两车同时从A、B两地出发,相向而行,经过5小时相遇,相遇后两车又行驶了3小时,这时甲车离B地还有230千米,乙车离A地还有160千米,求A、B两地的距离是多少千米?解析:975千米【分析】根据题意,甲、乙两车5小时行完全程,则两车每小时共行全程的。相遇后两车又行驶了3小时,行驶了全程的。把全程看作单位“1”,则两车剩下的路程共占全程的(1-),用两车剩下的路程之和除以(1-)即可求出全程。【详解】×3=(230+160)÷(1-)=390÷=975(千米)答:A、B两地的距离是975千米。【点睛】已知一个数的几分之几是多少,求这个数,用除法计算。明确“两车每小时共行全程的”和“两车剩下的路程共占全程的(1-)”是解题的关键。19.六(1)班女生人数比全班人数的多2人,男生有22人,全班有多少人?解析:60人【分析】将全班人数看作单位“1”,男生人数+2刚好是全班人数的1-,用男生人数÷对应分率即可。【详解】(22+2)÷(1-)=24÷=60(人)答:全班有60人。【点睛】关键是确定单位“1”,找到部分数量以及对应分率。20.一个书架上下两层共有图书450本,如果将上层书增加它的,下层书增加它的,这时上、下两层图书的本数就一样多.这个书架原来上、下层各有图书多少本?解析:上层200本,下层250本【详解】解:设上层书架原有x本书,则下层书架原有(450﹣x)本,得(1+)x=(450﹣x)×(1+)x=(450﹣x)×x=585﹣xx=585x=200450﹣200=250(本)答:原来上层书架有图书200本、下层书架有图书250本.21.当你开车开到路程时,你油箱的油已由原来的满箱到只有箱。问:是否能用这些油到达终点?请你尝试说说理由。解析:不能【详解】(箱)(箱)答:不能用这些油到达终点22.六(1)班的同学买了48米彩带,用总长的做蝴蝶结,用总长的做中国结。还剩多少米彩带?解析:20米【分析】将全部彩带当作单位“1”,用做蝴蝶结,用做中国结,根据分数减法的意义,还剩下全部的1--,则用48米乘以剩下部分占全部的分率,即得还剩下多少米彩带。【详解】48×(1--)=48×=20(米)答:还剩20米彩带。【点睛】本题考查求一个数的几分之几是多少,明确单位“1”是解题的关键。23.甲、乙两人同时从A地去B地(行走的速度保持不变),当甲行走了全程的时,乙行走了20千米,当甲到达B地时,乙还有全程的没有行走,A.B两地相距多少千米?解析:70千米【解析】【详解】(1÷)×20÷(1-)=70(千米)24.甲乙两城相距450千米,两辆汽车同时从甲乙两城相对开出,3小时后相遇,已知快车与慢车的速度比是,那么快车比慢车总共多行驶了多少千米?解析:90千米【分析】根据题意,3小时相遇,可以根据总路程除以3,即可求得两辆汽车的速度和。再根据速度比是,计算出两车行驶的路程,求差即可。【详解】450÷3=150(千米)150×=90(千米);90×3=270(千米)150×=60(千米);60×3=180(千米)270-180=90(千米)答:快车比慢车总共多行驶了90千米。【点睛】本题也可以根据比例知识求解:速度比是,则相同时间内行驶的路程比也是。25.下图中,以圆的半径为边长的正方形的面积是75平方厘米.求圆的面积.解析:5【详解】26.一个工程队修一条公路,第一天修45米,第二天修全长的,第二天修的米数又恰好比第一天多,这条公路全长多少米?解析:216m【详解】答:这条公路全长216米.27.甲、乙两车分别从A、B两地同时出发,相向而行,4小时后在距离中点80千米处相遇,甲乙两车的速度比是9∶5,甲每小时行多少千米?解析:90千米【分析】根据题意可知,两车相遇时,所行路程相差80×2=160(千米),两车行驶的时间相同,所以速度比就是所行的路程之比,所以甲比乙多行全程的(),根据分数除法的意义,求出全程,除以相遇时间求出速度之和,再按比例分配求出甲的速度。【详解】80×2÷()=160÷=560(千米)560÷4×=140×=90(千米)答:甲每小时行90千米。【点睛】此题考查了有关比的相关应用,明确两车行驶的路程之差是两个80千米,先求出总路程是解题关键。28.某口罩厂两个车间计划生产相同个数的防尘口罩和医用口罩,当医用口罩完成了时,防尘口罩刚好完成了。这时,为了提前完成医用口罩的生产任务,改进了生产工艺,效率提高了50%。这样,当医用口罩完成任务时,防尘口罩还有3500个没完成,原计划生产医用口罩多少个?解析:24500个【分析】根据题目可知,当医用口罩完成了时,防尘口罩刚好完成了,此时两种口罩生产的时间是相同的,根据效率比等于完成的量的比,即生产医用口罩的效率∶生产防尘口罩的效率=∶=14∶15,即医用口罩的效率∶防尘口罩的效率=,由此可知防尘口罩的生产效率是医用口罩生产效率的,假设医用口罩生产效率为1,防尘口罩生产效率:;由于提高效率50%,即此时医用口罩的生产效率:1×(1+50%)=,则此时防尘口罩的生产效率为医用口罩的÷=,提高生产效率后生产的防尘口罩量是提高效率后生产医用口罩的,即口罩总量×(1-)×,设:口罩总量为x个,列方程:x-x-x×(1-)×=3500,解方程,即可解答。【详解】解:设原计划生产口罩x个,由题意分析可列出方程:答:原计划生产医用口罩24500个。【点睛】本题主要考查的是比的应用以及列方程解决实际问题,解题的关键是找出提高效率之后医用口罩生产效率和防尘口罩之间的关系,再列方程计算。29.一辆卡车和一辆客车分别从甲、乙两城同时出发,相向而行,卡车到达乙城后立即返回,客车到达甲城后也立即返回,已知卡车和客车的速度比为,两车第一次相遇地点距离第二次相遇地点24千米,求甲、乙两城相距多少千米?解析:84千米【分析】两车第一次相遇后到第二次相遇,这之间一共行驶了两倍的两城市之间的距离长度,已知卡车与客车的速度比是4∶3,即路程比是4∶3,则两车的路程差是,用24除以路程差,就是两倍的城市距离,再除以2即可。【详解】24÷()÷2=24÷÷2=84(千米)答:甲、乙两城相距84千米。【点睛】此题考查了学生对多次相遇问题的理解能力及其比的应用,关键是找出数量对应的分率。30.一张桌子可以坐6人,两张桌子拼起来可以坐10人,三张桌子拼起来可以坐14人.像这样共几张桌子拼起来可以坐50人?解析:12张【分析】第一张桌子可以坐6人;拼2张桌子可以坐6+4×1=10人;拼3张桌子可以坐6+4×2=14人;故n张桌子拼在一起可以坐6+4(n-1)=4n+2.【详解】解:设第n张桌子可以坐50人.4n+2=50n=12答:像这样12张桌子拼起来可以坐50人.31.甲、乙两车同时从A、B两地相对开出,相遇后继续前进,当两车又相距70千米时,甲行驶了全程的75%,乙离A地的路程与已行驶的路程比是1∶2,A、B两地相距多少千米?解析:168千米【分析】此题可以画线段图来帮助理解:乙离A地的路程与已行路程的比为1:2,也就是乙离A地的路程占全程的,已知甲行了75%,由图意可知,70千米占全长的(75%-),由此列式解决问题。【详解】70÷(75%-)=70÷(-)=70÷=168(千米)答:A、B两地相距168千米。【点睛】此题主要考查学生运用行程问题的基本知识,解答较复杂的行程问题的能力。在解答此题时,关键是要找出70千米所占全程的分率。32.一个周长为12.56厘米的圆在长方形内滚动一周后回到初始位置(如下图所示),圆心所经过的路程是40厘米,已知图中长方形的长和宽之比是5:2,这个长方形的面积是多少平方厘米?解析:160平方厘米【详解】圆的半径:12.56÷3.14÷2=2(厘米),设长方形的长和宽分别为5a厘米和2a厘米,则圆心经过的路程长是(5a-2×2)厘米,宽是(2a-2×2)厘米;(5a-2×2+2a-2×2)×2=407a-8=207a=28a=4长方形的面积为:(5×4)×(2×4)=20×8=160(平方厘米)答:这个长方形的面积是160平方厘米.【点睛】解答此题关键是明确圆心经过的路径是一个长方形,长和宽分别比原长方形少两个半径.33.红光农场去年植树的数量比前年成活的树木多40%,去年的成活率是60%。去年成活的树木数量是前年成活树木的百分之多少?解析:84%【详解】(1+40%)60%=1.40.6=0.84=84%34.一项工程,甲队单独完成需要60天。若甲队先单独做18天,则剩余的甲、乙两队合作24天可以完成。乙队单独完成这项工程需要多少天?解析:80天【分析】根据题意可知,工作总量为单位“1”,甲队的工作效率为,则甲队单独做18天后,剩下总量的1-×18,再除以甲、乙两队合作的工作时间即可求出工作效率之和,再减去甲队的工作效率即可求出乙队的工作效率,进而解答即可。【详解】(1-×18)÷24-=÷24-=-=;1÷=80(天);答:乙队单独完成这项工程需要80天。【点睛】解答本题的关键是明确甲队的工作效率,进而根据工作效率、工作时间和工作总量之间的关系求出乙队的工作效率,从而进一步解答。35.某通信公司有两种不同的通话费计费方式,第一种:每月付20元月租费,然后每分钟收通话费0.18元;第二种:不收月租费,每分钟收通话费0.28元。①如果每月通话300分钟,哪一种计费方式更便宜?②每月通话多少分钟,两种计费方式的通话费正好相等?解析:①如果每月通话300分钟,第一种通话计费方式便宜②每月通话200分钟,两种计费方式的通话费正好相等【分析】(1)如果每月通话300分钟,按第一种计费方式应付费=月租费+每分钟通话费×通话时间;再计算出第二种计费方式应交的话费,再比较;(3)设出通话时间,根据等量关系式:20+通话时间×0.18=0.28×通话时间,列方程解答即可。【详解】①20+0.18×300=20+54=74(元)0.28×300=84(元)84>74答:如果每月通话300分钟,第一种通话计费方式便宜。②解:设每月通话分钟,两种计费方式的通话费正好相等答:每月通话200分钟,两种计费方式的通话费正好相等【点睛】此题应通过分析,找出正确的等量关系,进而列式计算得出问题结论。36.已知下面三个图中大正方形的边长相等。常常有人说,图中阴影部分的面积相等,但很少有人说清楚为什么。请根据你所学的知识证明这个结论,并且尽可能让你的理由充分一些,结论可信一些,说理过程清楚一些。解析:见详解【分析】假设正方形的边长是4,图①阴影部分的面积=正方形面积-圆的面积;图②阴影部分的面积=正方形面积-4个小圆的面积;图③阴影部分的面积=正方形面积-扇形面积,分别求出三个阴影部分的面积,比较即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论