版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省西安交通大附中数学九上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.九(1)班的教室里正在召开50人的座谈会,其中有3名教师,12名家长,35名学生,当林校长走到教室门口时,听到里面有人在发言,那么发言人是家长的概率为()A. B. C. D.2.一个圆柱和一个正方体按如图所示放置,则其俯视图为()A. B.C. D.3.如图,点,为直线上的两点,过,两点分别作轴的平行线交双曲线()于、两点.若,则的值为()A.12 B.7 C.6 D.44.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.1.71s B.1.71s C.1.63s D.1.36s5.已知是方程x2﹣2x+c=0的一个根,则c的值是()A.﹣3 B.3 C. D.26.如图,⊙O的半径为2,点A的坐标为,直线AB为⊙O的切线,B为切点,则B点的坐标为()A. B. C. D.7.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V()的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将会爆炸,为了安全起见,气球的体积应()A.不小于 B.大于 C.不小于 D.小于8.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,若AC=8,CE=12,BD=6,则BF的值是()A.14 B.15 C.16 D.179.方程的解是()A.4 B.-4 C.-1 D.4或-110.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.二、填空题(每小题3分,共24分)11.已知中,,,,则的长为__________.12.在等腰中,,点是所在平面内一点,且,则的取值范围是______.13.若反比例函数的图像在二、四象限,其图像上有两点,,则______(填“”或“”或“”).14.如图,在山坡上种树时,要求株距(相邻两树间的水平距离)为6m.测得斜坡的斜面坡度为i=1:(斜面坡度指坡面的铅直高度与水平宽度的比),则斜坡相邻两树间的坡面距离为_____.15.数据﹣3,6,0,5的极差为_____.16.用长的铁丝做一个长方形框架,设长方形的长为,面积为,则关于的函数关系式为__________.17.方程组的解是_____.18.在1:5000的地图上,某两地间的距离是,那么这两地的实际距离为______________千米.三、解答题(共66分)19.(10分)如图,直线y=x+2与抛物线y=ax2+bx+6相交于A(,)和B(4,m),直线AB交x轴于点E,点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式.(2)连结AC、BC,是否存在一点P,使△ABC的面积等于14?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)若△PAC与△PDE相似,求点P的坐标.20.(6分)如图,四边形ABCD是⊙O的内接四边形,,AC为直径,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.21.(6分)如图,在同一平面直角坐标系中,正比例函数y=2x的图象与反比例函数y=的图象交于A,B两点,过点A作AC⊥x轴,垂足为点C,AC=2,求k的值.22.(8分)某电商在购物平台上销售一款小电器,其进价为元件,每销售一件需缴纳平台推广费元,该款小电器每天的销售量(件)与每件的销售价格(元)满足函数关系:.为保证市场稳定,供货商规定销售价格不得低于元件且不得高于元件.(1)写出每天的销售利润(元)与销售价格(元)的函数关系式;(2)每件小电器的销售价格定为多少元时,才能使每天获得的利润最大,最大是多少元?23.(8分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?24.(8分)先化简,再求值:x﹣1(1﹣x)﹣x(1﹣),其中x=1.25.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交线段CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,请直接写出存在个满足题意的点.26.(10分)如图,正方形的对角线、相交于点,过点作的平行线,过点作的平行线,它们相交于点.求证:四边形是正方形.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】根据概率=频数除以总数即可解题.【题目详解】解:由题可知:发言人是家长的概率==,故选B.【题目点拨】本题考查了概率的实际应用,属于简单题,熟悉概率的计算方法是解题关键.2、D【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【题目详解】解:一个圆柱和一个正方体按如图所示放置,则其俯视图为左边是一个圆,右边是一个正方形.故选:D.【题目点拨】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3、C【分析】延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据BD=2AC即可得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【题目详解】延长AC交x轴于E,延长BD交x轴于F.设A、B的横坐标分别是a,b.∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线(x>0)上,则CE,DF,∴BD=BF﹣DF=b,AC=a.又∵BD=2AC,∴b2(a),两边平方得:b22=4(a22),即b24(a2)﹣1.在直角△OCE中,OC2=OE2+CE2=a2,同理OD2=b2,∴4OC2﹣OD2=4(a2)﹣(b2)=1.故选:C.【题目点拨】本题考查了反比例函数与勾股定理的综合应用,正确利用BD=2AC得到a,b的关系是关键.4、D【分析】找重心最高点,就是要求这个二次函数的顶点,应该把一般式化成顶点式后,直接解答.【题目详解】解:h=3.5t-4.9t2=-4.9(t-)2+,∵-4.9<1∴当t=≈1.36s时,h最大.故选D.【题目点拨】此题主要考查了二次函数的应用,根据题意得出顶点式在解题中的作用是解题关键.5、B【分析】把x=代入方程得到关于c的方程,然后解方程即可.【题目详解】解:把x=代入方程x2﹣2x+c=0,得()2﹣2×+c=0,所以c=6﹣1=1.故选:B.【题目点拨】本题考查了一元二次方程根的性质,解答关键是将方程的根代入原方程求出字母系数.6、D【解题分析】过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为,即OC=2.∴AC是圆的切线.∵OA=4,OC=2,∴∠AOC=60°.又∵直线AB为⊙O的切线,∴∠AOB=∠AOC=60°.∴∠BOD=180°-∠AOB-∠AOC=60°.又∵OB=2,∴OD=1,BD=,即B点的坐标为.故选D.7、C【解题分析】由题意设设,把(1.6,60)代入得到k=96,推出,当P=120时,,由此即可判断.【题目详解】因为气球内气体的气压p(kPa)是气体体积V()的反比例函数,所以可设,由题图可知,当时,,所以,所以.为了安全起见,气球内的气压应不大于120kPa,即,所以.故选C.【题目点拨】此题考查反比例函数的应用,解题关键在于把已知点代入解析式.8、B【分析】三条平行线截两条直线,所得的对应线段成比例.直接根据平行线分线段成比例定理即可得出结论.【题目详解】解:∵a∥b∥c,AC=8,CE=12,BD=6,
∴,即,解得:,故选:B.【题目点拨】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.9、D【分析】利用因式分解法解一元二次方程即可.【题目详解】解:解得:故选D.【题目点拨】此题考查的是解一元二次方程,掌握用因式分解法解一元二次方程是解决此题的关键.10、B【解题分析】根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故本选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.故选B.二、填空题(每小题3分,共24分)11、5或1【分析】作交BC于D,分两种情况:①D在线段BC上;②D在线段BC的延长线上,根据锐角三角函数值和勾股定理求解即可.【题目详解】作交BC于D①D在线段BC上,如图∵∴∴,在Rt△ACD中,由勾股定理得∴②D在线段BC的延长线上,如图∵∴∴,在Rt△ACD中,由勾股定理得∴故答案为:5或1.【题目点拨】本题考查了解三角形的问题,掌握锐角的三角函数以及勾股定理是解题的关键.12、【分析】根据题意可知点P在以AB为直径,AB的中点O为圆心的上,然后画出图形,找到P点离C点距离最近的点和最远的点,然后通过勾股定理求出OC的长度,则答案可求.【题目详解】∴点P在以AB为直径,AB的中点O为圆心的上如图,连接CO交于点,并延长CO交于点当点P位于点时,PC的长度最小,此时当点P位于点时,PC的长度最大,此时故答案为:.【题目点拨】本题主要考查线段的取值范围,能够找到P点的运动轨迹是圆是解题的关键.13、<【解题分析】分析:根据反比例函数的增减性即可得出答案.详解:∵图像在二、四象限,∴在每一个象限内,y随着x的增大而增大,∵1<2,∴.点睛:本题主要考查的是反比例函数的增减性,属于基础题型.对于反比例函数,当k>0时,在每一个象限内,y随着x的增大而减小;当k<0时,在每一个象限内,y随着x的增大而增大.14、4米.【分析】首先根据斜面坡度为i=1:求出株距(相邻两树间的水平距离)为6m时的铅直高度,再利用勾股定理计算出斜坡相邻两树间的坡面距离.【题目详解】由题意水平距离为6米,铅垂高度2米,∴斜坡上相邻两树间的坡面距离=(m),故答案为:4米.【题目点拨】此题考查解直角三角形的应用,解题关键是掌握计算法则.15、1【分析】根据极差的定义直接得出结论.【题目详解】∵数据﹣3,6,0,5的最大值为6,最小值为﹣3,∴数据﹣3,6,0,5的极差为6﹣(﹣3)=1,故答案为1.【题目点拨】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.16、或【分析】易得矩形另一边长为周长的一半减去已知边长,那么矩形的面积等于相邻两边长的积.【题目详解】由题意得:矩形的另一边长=24÷2−x=12−x,则y=x(12−x)=−x2+12x.故答案为或【题目点拨】本题考查了二次函数的应用,掌握矩形周长与面积的关系是解题的关键.17、【分析】根据二元一次方程组的解法解出即可.【题目详解】解:,①+②得:3x=9,x=3,把x=3代入①得:y=2,∴,故答案为:.【题目点拨】本题考查解二元一次方程组,关键在于熟练掌握解法步骤.18、1【分析】根据比例尺的意义,可得答案.【题目详解】解:,故答案为:1.【题目点拨】本题考查了比例尺,利用比例尺的意义是解题关键,注意把厘米化成千米.三、解答题(共66分)19、(1)y=2x2﹣8x+6;(2)不存在一点P,使△ABC的面积等于14;(3)点P的坐标为(3,5)或(,).【分析】(1)由B(4,m)在直线y=x+2上,可求得m的值,已知抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过待定系数法即可求得解析式;(2)设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC的长度与P点横坐标的函数关系式,根据三角形面积公式列出方程,即可解答;(3)根据△PAC与△PDE相似,可得△PAC为直角三角形,根据直角顶点的不同,有3种情形,分类讨论,即可分别求解.【题目详解】(1)∵B(4,m)在直线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,),B(4,6)在抛物线y=ax2+bx+6上,∴,解得,∴抛物线的解析式为y=2x2﹣8x+6;(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∵点P是线段AB上异于A、B的动点,∴,∴PC=(n+2)﹣(2n2﹣8n+6)=﹣2n2+9n﹣4,假设△ABC的面积等于14,则PC•(xB﹣xA)=14,∴,即:2n2﹣9n+12=0,∵△=(-9)2﹣4×2×12<0,∴一元二次方程无实数解,∴假设不成立,即:不存在一点P,使△ABC的面积等于14;(3)∵PC⊥x轴,∴∠PDE=90°,∵△PAC与△PDE相似,∴△PAC也是直角三角形,①当P为直角顶点,则∠APC=90°由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;②若点A为直角顶点,则∠PAC=90°.如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3①又抛物线的解析式为:y=2x2﹣8x+6②联立①②式,解得:或(与点A重合,舍去),∴C(3,0),即点C、M点重合.当x=3时,y=x+2=5,∴P1(3,5);③若点C为直角顶点,则∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如图2,作点A(,)关于对称轴x=2的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+2=.∴P2(,).∵点P1(3,5)、P2(,)均在线段AB上,∴综上所述,若△PAC与△PDE相似,点P的坐标为(3,5)或(,).【题目点拨】本题主要考查二次函数的图象和性质与三角形的综合问题,掌握二次函数的待定系数法,平面直角坐标系中,三角形的面积公式,相似三角形的判定和性质定理,以及分类讨论和数形结合思想,是解题的关键.20、(1)证明见解析;(2)【解题分析】分析:(1)根据圆内接四边形的性质得到∠DCE=∠BAD,根据圆周角定理得到∠DCE=∠BAD,证明即可;(2)证明△DCE∽△ACD,根据相似三角形的性质列出比例式,计算即可.详解:(1)证明:∵四边形ABCD是⊙O内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵=,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE;(2)解:∵AC为直径,∴∠ADC=90°,∵DE⊥BC,∴∠DEC=90°,∴∠DEC=∠ADC,∵∠DCE=∠ACD,∴△DCE∽△ACD,∴=,即=,∴CD=3.点睛:本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.21、k=1【分析】根据题意A的纵坐标为1,把y=1代入y=1x,求得A的坐标,然后根据待定系数法即可求得k的值.【题目详解】解:∵AC⊥x轴,AC=1,∴A的纵坐标为1,∵正比例函数y=1x的图象经过点A,∴1x=1,解得x=1,∴A(1,1),∵反比例函数y=的图象经过点A,∴k=1×1=1.【题目点拨】本题考查的知识点是正比例函数以及反比例函数图象上点的坐标,直接待如即可求出答案,比较基础.22、(1);(2)当时,w有最大值,最大值为750元【分析】(1)直接利用“总利润=每件的利润×销量”得出函数关系式;
(2)由(1)中的函数解析式,将其配方成顶点式,结合x的取值范围,利用二次函数的性质解答即可.【题目详解】(1)依题意得:(2)∵∴当,w随x的增大而减小∴当时,w有最大值,最大值为:元.【题目点拨】本题主要考查了二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出函数关系式及熟练掌握二次函数的性质.23、(1)(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元【解题分析】试题分析:(1)设y=kx+b,再由题目已知条件不难得出解析式;(2)设利润为W,将W用含x的式子表示出来,W为关于x的二次函数,要求最值,将解析式化为顶点式即可求出.试题解析:解:(1)设y=kx+b,根据题意得:,解得:k=-1,b=8,所以,y与x的函数关系式为y=-x+8;(2)设利润为W,则W=(x-4)(-x+8)=-(x-6)2+4,因为a=-1<0,所以当x=6时,W最大为4万元.当销售价格定为6元时,才能使每月的利润最大,每月的最大利润是4万元.点睛:要求最值,一般讲二次函数解析式写成顶点式.24、【分析】原式去括号并利用单项式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业管理十年升级:智慧社区与增值服务报告
- 基于数字化评价的小学物理教师专业成长路径研究教学研究课题报告
- 2025年云南能源职业技术学院马克思主义基本原理概论期末考试真题汇编
- 高中化学教育中人工智能伦理准则的制定与实施教学研究课题报告
- 《垃圾填埋场渗滤液处理过程中重金属去除技术研究》教学研究课题报告
- 2025年长春光华学院马克思主义基本原理概论期末考试模拟试卷
- 数字化教学评价体系下教师能力评价结果反馈的实证研究教学研究课题报告
- 2024年郑州商学院马克思主义基本原理概论期末考试笔试题库
- 2025年张家口职业技术学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年贵州建设职业技术学院马克思主义基本原理概论期末考试参考题库
- 吡仑帕奈口服混悬液-临床用药解读
- 计量经济学论文-中国进出口总额的影响因素分析
- 可复制的领导力课件教学课件
- 公司注册登记表格
- 《上帝掷骰子吗:量子物理史话》【超星尔雅学习通】章节答案
- 外贸发票 PI 形式发票模板范例
- YS/T 254.5-2011铍精矿、绿柱石化学分析方法第5部分:氟量的测定离子选择电极法
- GB/T 39532-2020能源绩效测量和验证指南
- GB/T 30475.3-2017压缩空气过滤器试验方法第3部分:颗粒
- GB/T 20659-2017石油天然气工业铝合金钻杆
- 能源科学概论
评论
0/150
提交评论