




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省南雄市第二中学2024届九年级数学第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.一个不透明的盒子装有个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则的值约为()A.8 B.10 C.20 D.402.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.3.在中,,若已知,则()A. B. C. D.4.若关于x的一元二次方程的两个实数根分别为,那么抛物线的对称轴为直线()A. B. C. D.5.某制药厂,为了惠顾于民,对一种药品由原来的每盒121元,经连续两次下调价格后,每盒降为81元;问平均每次下调的百分率是多少?设平均每次下调的百分率为x,则根据题可列的方程为()A.x= B.x=C. D.6.下列图形中,不是中心对称图形的是()A. B. C. D.7.如图,在四边形ABCD中,ADBC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB,若DG=3,EC=1,则DE的长为()A.2 B. C.2 D.8.在反比例函数图像的每一条曲线上,y都随x的增大而增大,则b的取值范围是()A.b=3 B. C. D.9.下列成语所描述的是随机事件的是()A.竹篮打水 B.瓜熟蒂落 C.海枯石烂 D.不期而遇10.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x
…
﹣3
﹣2
﹣1
0
1
…
y
…
﹣6
0
4
6
6
…
给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的左侧;③抛物线一定经过(3,0)点;④在对称轴左侧y随x的增大而减增大.从表中可知,其中正确的个数为()A.4 B.3 C.2 D.1二、填空题(每小题3分,共24分)11.如图,抛物线和抛物线的顶点分别为点M和点N,线段MN经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是__________,MN平移到PQ扫过的阴影部分的面积是__________.12.把抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.13.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.14.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°15.若分别是方程的两实根,则的值是__________.16.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=.17.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.18.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_____.三、解答题(共66分)19.(10分)如图,已知双曲线与直线交于点和点(1)求双曲线的解析式;(2)直接写出不等式的解集20.(6分)用适当的方法解一元二次方程:(1)x2+4x﹣12=0(2)2x2﹣4x+1=021.(6分)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(-2)☆3的值;(2)若=8,求a的值.22.(8分)某市有、两个公园,甲、乙、丙三位同学随机选择其中一个公园游玩,请利用树状图求三位同学恰好在同一个公园游玩的概率.23.(8分)已知二次函数图象的顶点在原点,对称轴为轴.直线的图象与二次函数的图象交于点和点(点在点的左侧)(1)求的值及直线解析式;(2)若过点的直线平行于直线且直线与二次函数图象只有一个交点,求交点的坐标.24.(8分)边长为2的正方形在平面直角坐标系中的位置如图所示,点是边的中点,连接,点在第一象限,且,.以直线为对称轴的抛物线过,两点.(1)求抛物线的解析式;(2)点从点出发,沿射线每秒1个单位长度的速度运动,运动时间为秒.过点作于点,当为何值时,以点,,为顶点的三角形与相似?(3)点为直线上一动点,点为抛物线上一动点,是否存在点,,使得以点,,,为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.25.(10分)如图1,已知平行四边形,是的角平分线,交于点.(1)求证:.(2)如图2所示,点是平行四边形的边所在直线上一点,若,且,,求的面积.26.(10分)如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位:).(1)直接写出上下两个长方休的长、宽、商分别是多少:(2)求这个立体图形的体积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【题目详解】由题意可得,=0.2,解得,m=20,经检验m=20是所列方程的根且符合实际意义,故选:C.【题目点拨】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.2、A【解题分析】直接利用锐角三角函数关系得出sinB的值.【题目详解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故选A.【题目点拨】此题主要考查了锐角三角函数关系,正确把握定义是解题关键.3、B【分析】根据题意利用三角函数的定义,定义成三角形的边的比值,进行分析计算即可求解.【题目详解】解:在中,,∵,设BC=3x,则AC=4x,根据勾股定理可得:,∴.故选:B.【题目点拨】本题主要考查三角函数的定义,注意掌握求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.4、B【分析】根据方程的两根即可得出抛物线与x轴的两个交点坐标,再利用抛物线的对称性即可得出抛物线的对称轴.【题目详解】∵方程x2+bx+c=0的两个根分别为x1=-1,x2=2,∴抛物线y=x2+bx+c与x轴的交点坐标为(-1,0)、(2,0),∴抛物线y=x2+bx+c的对称轴为直线x.故选:B.【题目点拨】本题考查了抛物线与x轴的交点以及二次函数的性质,根据抛物线与x轴的交点横坐标找出抛物线的对称轴是解答本题的关键.5、D【分析】设平均每次下调的百分率为x,根据该药品的原价及经过两次下调后的价格,即可得出关于x的一元二次方程,此题得解.【题目详解】解:设平均每次下调的百分率为x,依题意,得:121(1﹣x)2=1.故选:D.【题目点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6、A【题目详解】解:根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选A.7、C【分析】根据直角三角形斜边上中线的性质可得DG=AG,根据等腰三角形的性质,得到,由三角形外角的性质,可得,再根据平行线的性质和等量关系可得,根据等腰三角形的性质得到CD=DG,最后由勾股定理解题即可.【题目详解】为AF的中点,即DG为斜边AF的中线,设在中,根据勾股定理得,故选:C.【题目点拨】本题考查勾股定理、直角三角形斜边上的中线、等腰三角形的性质、平行线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8、C【分析】由反比例函数的图象的每一条曲线上,y都随x的增大而增大,可得3-b<0,进而求出答案,作出选择.【题目详解】解:∵反比例函数的图象的每一条曲线上,y都随x的增大而增大,∴3-b<0,∴b>3,故选C.【题目点拨】考查反比例函数的性质和一元一次不等式的解法,掌握反比例函数的性质是解决问题的关键.9、D【分析】根据事件发生的可能性大小判断.【题目详解】解:A、竹篮打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、海枯石烂,是不可能事件;D、不期而遇,是随机事件;故选:D.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、B【解题分析】试题分析:当x=0时y=6,x=1时y=6,x=﹣2时y=0,可得,解得,∴抛物线解析式为y=﹣x2+x+6=﹣(x﹣)2+,当x=0时y=6,∴抛物线与y轴的交点为(0,6),故①正确;抛物线的对称轴为x=,故②不正确;当x=3时,y=﹣9+3+6=0,∴抛物线过点(3,0),故③正确;∵抛物线开口向下,∴在对称轴左侧y随x的增大而增大,故④正确;综上可知正确的个数为3个,故选B.考点:二次函数的性质.二、填空题(每小题3分,共24分)11、(1,5)16【分析】先将M、N两点坐标分别求出,然后根据N点的移动规律得出M点的横坐标向右移动2个单位长度,进一步即可求出M点坐标;根据二次函数图像性质我们可以推断出MN平移到PQ扫过的阴影部分的面积等同于菱形MNQP,之后进一步求出相关面积即可.【题目详解】由题意得:M点坐标为(-1,1),N点坐标为(1,-3),∵点Q横坐标为3,∴N点横坐标向右平移了2个单位长度,∴P点横坐标为-1+2=1,∴P点纵坐标为:1+2+2=5,∴P点坐标为:(1,5),由题意得:Q点坐标为:(3,1),∴MQ平行于x轴,PN平行于Y轴,∴MQ⊥PN,∴四边形MNQP为菱形,∴菱形MNQP面积=×MQ×PN=16,∴MN平移到PQ扫过的阴影部分的面积等于16,故答案为:(1,5),16.【题目点拨】本题主要考查了二次函数图像的性质及运用,熟练掌握相关概念是解题关键.12、【分析】根据二次函数图象的平移规律平移即可.【题目详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【题目点拨】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键.13、、、【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【题目详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB==5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴,即:,解得x=,②△BDE∽△BCA,如图2,BE=1+x∴,即:,解得:x=,BE=>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴,即,解得:x=,④△BDE∽△BCA,如图4,AE=6-x∴,即:,解得:x=,综上:AD的长为、、.【题目点拨】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.14、B.【解题分析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.15、3【分析】根据一元二次方程根与系数的关系即可得答案.【题目详解】∵分别是方程的两实根,∴=3,故答案为:3【题目点拨】此题考查根与系数的关系,一元二次方程根与系数的关系:x1+x2=-,x1x2=;熟练掌握韦达定理是解题关键.16、105°.【分析】连接OQ,由旋转的性质可知:△AQC≌△BOC,从而推出∠OAQ=90°,∠OCQ=90°,再根据特殊直角三角形边的关系,分别求出∠AQO与∠OQC的值,可求出结果.【题目详解】连接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠B=45°,由旋转的性质可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,设BO=1,OA=,∴AQ=1,则tan∠AQO==,∴∠AQO=60°,∴∠AQC=105°.故答案为105°.17、74【分析】利用加权平均数公式计算.【题目详解】甲的成绩=,故答案为:74.【题目点拨】此题考查加权平均数,正确理解各数所占的权重是解题的关键.18、【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,进而得出答案.【题目详解】连接BD,过点B作BN⊥AD于点N,∵将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=1,BN=,S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD==π﹣=.故答案为.【题目点拨】考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD是等边三角形是解题关键.三、解答题(共66分)19、(1);(2)或【分析】(1)将点A坐标代入双曲线解析式即可得出k的值,从而求出双曲线的解析式;(2)求出B点坐标,利用图象即可得解.【题目详解】解:(1)∵双曲线经过点,.∴双曲线的解析式为(2)由双曲线解析式可得出B(-4,-1),结合图象可得出,不等式的解集是:或.【题目点拨】本题考查的知识点是反比例函数与一次函数的交点问题,解题的关键是从图象中得出相关信息.20、(1),;(2),【分析】(1)利用因式分解法求解可得;(2)利用公式法求解可得.【题目详解】解:(1)∵x2+4x﹣12=0,∴(x+6)(x﹣2)=0,则x+6=0或x﹣2=0,解得,;(2)∵a=2,b=﹣4,c=1,∴△=(﹣4)2﹣4×2×1=8>0,则x=∴,【题目点拨】本题主要考查了一元二次方程的解法,解题的关键是熟悉一元二次方程的解法.21、(1)-32;(2)a=1.【解题分析】分析:(1)原式利用题中的新定义化简,计算即可得到结果;(2)已知等式利用题中的新定义化简,即可求出a的值.详解:(1)(-2)☆3=-2×32+2×(-2)×3+(-2)=-32;(2)==8a+8=8,解得:a=1.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22、,见解析【分析】利用树状图法找出所有的可能情况,再找三位同学恰好在同一个公园游玩的情况个数,即可求出所求的概率.【题目详解】解:树状图如下:由上图可知一共有种等可能性,即、、、、、、、,它们出现的可能性选择,其中三位同学恰好在同一个公园游玩的有种等可能性,∴.【题目点拨】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.23、(1)m=,;(2)【分析】(1)由于抛物线的顶点为原点,因此可设其解析式为y=ax2,直接将A点,B点的坐标代入抛物线中即可求出抛物线的解析式以及m的值,进而可知出点B的坐标,再将A,B点的坐标代入一次函数中,即可求出一次函数的解析式.(2)根据题意可知直线l2的解析式,由抛物线与l2只有一个交点,联立直线与二次函数的解析式,消去y,得出一个含x一元二次方程,根据方程的判别式为0可求得n的值,进而得出结果.【题目详解】(1)解:假设二次函数的解析式为,将分别代入二次函数的解析式,得:,解得.解得:.将代入中,得,,解得:.的解析式为.(2)由题意可知:l2∥l1,可设直线的解析式为:过点,则有:..由题意,联立直线与二次函数的解析式,可得以下方程组:,消元,得:,整理,得:,①由题意,得与只有一个交点,可得:,解得:.将代回方程①中,得.将代入中,得.可得交点坐标为.【题目点拨】此题主要考查了求二次函数解析式,求一次函数解析式,以及两函数的交点问题,解决问题的关键是联立方程组求解.24、(1);(2)或时,以点,,为顶点的三角形与相似;(3)存在,四边形是平行四边形时,,;四边形是平行四边形时,,;四边形是平行四边形时,,【分析】(1)根据正方形的性质,可得OA=OC,∠AOC=∠DGE,根据余角的性质,可得∠OCD=∠GDE,根据全等三角形的判定与性质,可得EG=OD=1,DG=OC=2,根据待定系数法,可得函数解析式;(2)分类讨论:若△DFP∽△COD,根据相似三角形的性质,可得∠PDF=∠DCO,根据平行线的判定与性质,可得∠PDO=∠OCP=∠AOC=90,根据矩形的判定与性质,可得PC的长;若△PFD∽△COD,根据相似三角形的性质,可得∠DPF=∠DCO,,根据等腰三角形的判定与性质,可得DF于CD的关系,根据相似三角形的相似比,可得PC的长;(3)分类讨论:当四边形是平行四边形时,四边形是平行四边形时,四边形是平行四边形时,根据一组对边平行且相等的四边形式平行四边,可得答案.【题目详解】解:(1)过点作轴于点.∵四边形是边长为2的正方形,是的中点,∴,,.∵,∴.∵,∴.在和中,∴,,.∴点的坐标为.∵抛物线的对称轴为直线即直线,∴可设抛物线的解析式为,将、点的坐标代入解析式,得,解得.∴抛物线的解析式为;(2)①若,则,,∴,∴四边形是矩形,∴,∴;②若,则,∴.∴.∴,∴.∵,∴,∴.∵,∴,,综上所述:或时,以点,,为顶点的三角形与相似:(3)存在,①若以DE为平行四边形的对角线,如图2,此时,N点就是抛物线的顶点(2,),由N、E两点坐标可求得直线NE的解析式为:y=x;∵DM∥EN,∴设DM的解析式为:y=x+b,将D(1,0)代入可求得b=−,∴DM的解析式为:y=x−,令x=2,则y=,∴M(2,);②过点C作CM∥DE交抛物线对称轴于点M,连接ME,如图3,∵CM∥DE,DE⊥CD,∴CM⊥CD,∵OC⊥CB,∴∠OCD=∠BCM,在△OCD和△BCM中,∴△OCD≌△BCM(ASA),∴CM=CD=DE,BM=OD=1,∴CDEM是平行四边形,即N点与C占重合,∴N(0,2),M(2,3);③N点在抛物线对称轴右侧,MN∥DE,如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年恩替卡韦项目合作计划书
- 二年级学生阅读习惯培养计划
- 风险评估与预警机制-全面剖析
- 绿色节能型家电维修技术-全面剖析
- 二年级科学视频教学计划
- 四年级体育课外拓展活动计划
- 融合传播:2025年广播影视行业媒体融合传播效果评价报告
- 旅游业信息技术应用能力提升计划
- 2025-2030年中国电极糊行业前景预测分析与投资趋势研究报告
- 2025-2030年中国特种养殖动物行业竞争态势及投资发展预测研究报告
- 医疗器械经营范围经营方式说明
- 可编辑修改中国地图模板
- 江苏省生物技术和新医药产业发展规划纲要
- 深信服SD-WAN产品使用说明书
- 安全观摩手册
- 事业单位1993历次调整工资标准对照表
- 关于中节能太阳能科技股份有限公司主要税种纳税情况的专项审核报告
- 药店营业场所养护工作记录表
- 个人简历表格
- 广西行政区划代码
- 心理咨询回访记录表
评论
0/150
提交评论