版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省松原第五中学2024届数学九年级第一学期期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,将绕着点按顺时针方向旋转,点落在位置,点落在位置,若,则的度数是()A. B. C. D.2.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则cosB的值是()A.B.C.D.3.若a是方程的一个解,则的值为A.3 B. C.9 D.4.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.AEEC=BEED B.AE5.下列说法正确的是()A.了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B.甲、乙两人跳远成绩的方差分别为,,说明乙的跳远成绩比甲稳定C.一组数据2,2,3,4的众数是2,中位数是2.5D.可能性是1%的事件在一次试验中一定不会发生6.若关于的一元二次方程有两个相等的实数根,则的值为()A. B. C. D.7.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是()A. B. C. D.8.3的倒数是()A. B. C. D.9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A. B. C. D.10.如图,等腰与等腰是以点为位似中心的位似图形,位似比为,则点的坐标是()A. B. C. D.二、填空题(每小题3分,共24分)11.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.12.若两个相似三角形的周长比为2:3,则它们的面积比是_________.13.在一个不透明的盒子里装有5个分别写有数字0,1,2,3,4的小球,它们除数字不同外其余全部相同.现从盒子里随机摸出一个小球(不放回),设该小球上的数字为m,再从盒子中摸出一个小球,设该小球上的数字为n,点P的坐标为,则点P落在抛物线与x轴所围成的区域内(含边界)的概率是________.14.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.15.如图,点D、E分别是线段AB、AC上一点∠AED=∠B,若AB=8,BC=7,AE=5则,则DE=_____.16.同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为___________.17.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是_____km.18.抛物线向左平移2个单位,再向上平移1个单位,得到的抛物线是______.三、解答题(共66分)19.(10分)如图,在中,点是弧的中点,于,于,求证:.20.(6分)如图,是的直径,点,是上两点,且,连接,,过点作交延长线于点,垂足为.(1)求证:是的切线;(2)若,求的半径.21.(6分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.22.(8分)在一次数学兴趣小组活动中,阳光和乐观两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则阳光获胜,反之则乐观获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)游戏对双方公平吗?请说明理由.23.(8分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将化为分数形式由于,设x=0.777…①则10x=7.777…②②‒①得9x=7,解得,于是得.同理可得,根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)(基础训练)(1),;(2)将化为分数形式,写出推导过程;(能力提升)(3),;(注:,2.01818…)(探索发现)(4)①试比较与1的大小:1;(填“>”、“<”或“=”)②若已知,则.(注:0.285714285714…)24.(8分)解方程:x2﹣2x﹣2=1.25.(10分)已知是一张直角三角形纸片,其中,,小亮将它绕点逆时针旋转后得到,交直线于点.(1)如图1,当时,所在直线与线段有怎样的位置关系?请说明理由.(2)如图2,当,求为等腰三角形时的度数.26.(10分)如图,点在上,,交于点,点为射线上一动点,平分,连接.(1)求证:;(2)连接,若,则当_______时,四边形是矩形.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.【题目详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC⊥A’B’可得∠BAC=∠A’=90°-20°=70°,故选择C.【题目点拨】本题考查了旋转的性质.2、B【解题分析】要求cosB,必须将∠B放在直角三角形中,由图可知∠D=∠B,而AD是直径,故∠ACD=90°,所以可进行等角转换,即求cosD.在Rt△ADC中,AC=2,AD=2r=3,根据勾股定理可求得,所以.3、C【解题分析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故选C.4、A【解题分析】利用平行线的性质以及相似三角形的性质一一判断即可.【题目详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故选项故选:A.【题目点拨】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、C【分析】全面调查与抽样调查的优缺点:全面调查收集的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果数据的个数是偶数,中间两数的平均数就是中位数,一组数据中出现次数最多的数据叫做众数.【题目详解】解:A.了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B.甲、乙两人跳远成绩的方差分别为,,说明甲的跳远成绩比乙稳定,B错误;C.一组数据,,,的众数是,中位数是,正确;D.可能性是的事件在一次试验中可能会发生,D错误.故选C.【题目点拨】本题考查了统计的应用,正确理解概率的意义是解题的关键.6、B【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2−4ac=0,建立关于k的等式,求出k.【题目详解】解:∵方程有两个相等的实数根,∴△=b2−4ac=62−4×1×k=36−4k=0,解得:k=1.故选:B.【题目点拨】本题考查一元二次方程根的情况与判别式,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.7、C【分析】根据列表法列出所有的可能情况,从中找出两个球颜色相同的结果数,再利用概率的公式计算即可得到答案.【题目详解】解:列表如图所示:由表可知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果所以摸出两个球颜色相同的概率是故选:C.【题目点拨】本题考查的是列表法与树状图的知识,解题的关键是能够用列表或者树状图将所有等可能结果列举出来.8、C【解题分析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9、A【解题分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【题目详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选A.【题目点拨】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.10、A【分析】根据位似比为,可得,从而得:CE=DE=12,进而求得OC=6,即可求解.【题目详解】∵等腰与等腰是以点为位似中心的位似图形,位似比为,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴点的坐标是:.故选A.【题目点拨】本题主要考查位似图形的性质,掌握位似图形的位似比等于相似比,是解题的关键.二、填空题(每小题3分,共24分)11、3或1.2【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【题目详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,BC=8,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为1.2或3.【题目点拨】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.12、4∶1【解题分析】试题解析:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:1.考点:相似三角形的性质.13、【分析】采用画树状图法写出的所有可能出现的结果,画出函数图像,并描出在抛物线与x轴所围成的区域内(含边界)点,再用符合题意的点的个数除以总个数,即可求出答案.【题目详解】如图,由树状图可知共有20种等可能结果,由坐标系可知,在抛物线与x轴所围成的区域内(含边界)的点有(0,0)、(1,3),(2,0)、(3,3),(3,0),(4,0),共6种结果,∴点在抛物线上的概率是=,故答案为:.【题目点拨】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14、1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n个图有多少个圆点.【题目详解】解:由图形可知,第1个图形有12+1+1=3个圆点;第2个图形有22+2+1=7个圆点;第3个图形有32+3+1=13个圆点;第4个图形有42+4+1=21个圆点;…则第n个图有(n2+n+1)个圆点;所以第20个图形有202+20+1=1个圆点.故答案为:1.【题目点拨】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.15、【分析】先根据题意得出△AED∽△ABC,再由相似三角形的性质即可得出结论.【题目详解】∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,∴,∵AB=8,BC=7,AE=5,∴,解得ED=.故答案为:.【题目点拨】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.16、【分析】首先根据题意画出图形,设出圆的半径,分别求出圆中内接正三角形、内接正四边形、内接正六边形的边长,即可得出答案.【题目详解】设圆的半径为r,如图①,过点O作于点C则如图②,如图③,为等边三角形∴同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为故答案为【题目点拨】本题主要考查圆的半径与内接正三角形,正方形和正六边形的边长之间的关系,能够画出图形是解题的关键.17、58【解题分析】设A、B两地的实际距离是x厘米,根据比例尺的性质列出方程,求出x的值,再进行换算即可得出答案.【题目详解】设A.B两地的实际距离是x厘米,∵比例尺为1:1000000,A.B两地的图上距离是5.8厘米,∴1:1000000=5.8:x,解得:x=5800000,∵5800000厘米=58千米,∴A、B两地的实际距离是58千米.故答案为58.【题目点拨】考查图上距离,实际距离,和比例尺之间的关系,注意单位之间的转换.18、【分析】先得到抛物线的顶点坐标为(0,0),根据平移规律得到平移后抛物线的顶点坐标,则利用顶点式可得到平移后的抛物线的解析式为.【题目详解】抛物线的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移1个单位得到的点的坐标为(,1),
所以平移后的抛物线的解析式为.
故答案为:.【题目点拨】本题考查了二次函数图象的平移:由于抛物线平移后的形状不变,故a不变,再考虑平移后的顶点坐标,即可求出解析式.三、解答题(共66分)19、证明见解析.【分析】连接,根据在同圆中,等弧所对的圆心角相等即可证出,然后根据角平分线的性质即可证出结论.【题目详解】证明:连接,∵点是弧的中点,∴,∴OC平分∠AOB∵,,∴【题目点拨】此题考查的是圆的基本性质和角平分线的性质,掌握在同圆中,等弧所对的圆心角相等和角平分线的性质是解决此题的关键.20、(1)见解析;(2)圆O的半径为1【分析】(1)连结OC,由根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得,在Rt△ACB中,利用含30度的直角三角形三边的关系得AB=2BC=1,从而求出⊙O的半径.【题目详解】解:(1)证明:连结OC,如图∵弧FC=弧BC∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴0C//AF,∵CD⊥AF,∴0C⊥CD,∴CD是圆O的切线;(2)连结BC,如图,∵AB为直径,∴∠ACB=90°,∵,∴∠BOC=×110°=60°,∴∠BAC=30˚,∴∠DAC=30˚,在RtΔADC中,CD=,∴AC=2CD=,在RtΔACB中,BC=AC==1,∴AB=2BC=16,∴圆O的半径为1.【题目点拨】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和含30度的直角三角形三边的关系.21、(1)y与x的函数解析式为;(2)这一天销售西瓜获得利润的最大值为1250元.【解题分析】(1)当6x≤10时,由题意设y=kx+b(k=0),利用待定系数法求得k、b的值即可;当10<x≤12时,由图象可知y=200,由此即可得答案;(2))设利润为w元,当6≦x≤10时,w=-200+1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w=200x-1200,由一次函数的性质结合x的取值范围可求得w的最大值为1200,两者比较即可得答案.【题目详解】(1)当6x≤10时,由题意设y=kx+b(k=0),它的图象经过点(6,1000)与点(10,200),∴,解得,∴当6x≤10时,y=-200x+2200,当10<x≤12时,y=200,综上,y与x的函数解析式为;(2)设利润为w元,当6x≤10时,y=-200x+2200,w=(x-6)y=(x-6)(-200x+200)=-200+1250,∵-200<0,6≦x≤10,当x=时,w有最大值,此时w=1250;当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,∴200>0,∴w=200x-1200随x增大而增大,又∵10<x≤12,∴当x=12时,w最大,此时w=1200,1250>1200,∴w的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.【题目点拨】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质,一次函数的性质等,弄清题意,找准各量间的关系是解题的关键.22、(1)见解析,两数和共有12种等可能结果;(2)游戏对双方公平,见解析【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况数,再根据概率公式分别求出阳光和乐观获胜的概率,然后进行比较即可得出答案.【题目详解】解:(1)根据题意列表如下:678939101112410111213511121314可见,两数和共有12种等可能结果;(2)∵两数和共有12种等可能的情况,其中和小于12的情况有6种,∴阳光获胜的概率为∴乐观获胜的概率是,∵=,∴游戏对双方公平.【题目点拨】解决游戏公平问题的关键在于分析事件发生的可能性,即比较游戏双方获胜的概率是否相等,若概率相等,则游戏公平,否则不公平.23、(1),;(2),推导过程见解析;(3),;(4)①;②.【分析】(1)根据阅读材料的方法即可得;(2)参照阅读材料的方法,设,从而可得,由此即可得;(3)参照阅读材料方法,设,从而可得,由此即可得;先将拆分为2与的之和,再参照阅读材料的方法即可得;(4)①先参照阅读材料的方法将写成分数的形式,再比较大小即可得;②先求出,再根据①的结论可得,然后根据即可得.【题目详解】(1)设①,则②,②①得:,解得,即,设①,则②,②①得:,解得,即,故答案为:,;(2)设①,则②,②①得:,解得,即;(3)设①,则②,②①得:,解得,即;,设①,则②,②①得:,解得,则,故答案为:,;(4)①设②,则③,③②得:,解得,即,故答案为:;②因为,,所以,所以,故答案为:.【题目点拨】本题考查了有理数的大小比较、等式的性质、解一元一次方程,读懂阅读材料的方法并灵活运用是解题关键.24、x1=1+,x2=1﹣.【解题分析】试题分析:把常数项2移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.试题解析:x2﹣2x﹣2=1移项,得x2﹣2x=2,配方,得x2﹣2x+1=2+1,即(x﹣1)2=3,开方,得x﹣1=±.解得x1=1+,x2=1﹣.考点:配方法解一元二次方程25、(1)BD与FM互相垂直,理由见解析;(2)β的度数为30°或75°或12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年浙江建设职业技术学院单招职业适应性考试参考题库及答案解析
- 2026年张家口职业技术学院单招职业适应性考试参考题库及答案解析
- 2026年广东省外语艺术职业学院单招职业适应性考试参考题库及答案解析
- 2026年长沙电力职业技术学院单招职业适应性测试备考题库及答案解析
- 2026年黑龙江建筑职业技术学院单招职业适应性考试备考题库及答案解析
- 期末个人总结范本
- 期中考试质量分析总结15篇
- 期末考试广播稿(集锦15篇)
- 毕业生实习心得体会15篇
- 2026年浙江纺织服装职业技术学院单招职业适应性测试模拟试题及答案解析
- 2026年中检集团人力资源专员绩效考核考试题库含答案
- 江苏省G4联考2026届高三上学期数学试题(解析版)
- 2025年网络安全教育知识题库及参考答案
- 酒驾恢复合同范本
- 湖南省长沙市望城区2024-2025学年四年级上学期期末考试数学试题
- 保安押运合同范本
- 甘肃省兰州新区2024-2025学年六年级上学期期末考试数学试题
- 公交车站设施维护管理方案
- 2024初级会计真题及答案(实务+经济法)
- 2025中国融通资产管理集团有限公司社会招聘考试笔试参考题库附答案解析
- 2025心肺复苏理论考试试题及答案
评论
0/150
提交评论