版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter13
MultipleRegressionMultipleRegressionModelLeastSquaresMethodMultipleCoefficientofDeterminationModelAssumptionsTestingforSignificanceUsingtheEstimatedRegressionEquation forEstimationandPredictionCategoricalIndependentVariables Theequationthatdescribeshowthedependentvariableyisrelatedtotheindependentvariablesx1,x2,...xpandanerrortermis:MultipleRegressionModely=b0+b1x1+b2x2+
...+bpxp+ewhere: b0,b1,b2,...,bparetheparameters,and eisarandomvariablecalledtheerrortermMultipleRegressionModel Theequationthatdescribeshowthemeanvalueofyisrelatedtox1,x2,...xpis:MultipleRegressionEquationE(y)=
0+
1x1+
2x2+...+
pxpMultipleRegressionEquation Asimplerandomsampleisusedtocomputesamplestatisticsb0,b1,b2,...,bpthatareusedasthepointestimatorsoftheparametersb0,b1,b2,...,bp.EstimatedMultipleRegressionEquation^y=b0+b1x1+b2x2+...+bpxpEstimatedMultipleRegressionEquationEstimationProcessMultipleRegressionModelE(y)=
0+
1x1+
2x2+...+
pxp+eMultipleRegressionEquationE(y)=
0+
1x1+
2x2+...+
pxp
Unknownparametersareb0,b1,b2,...,bpSampleData:x1x2...xpy........
EstimatedMultipleRegressionEquation
Samplestatisticsareb0,b1,b2,...,bpb0,b1,b2,...,bpprovideestimatesofb0,b1,b2,...,bpLeastSquaresMethodLeastSquaresCriterionComputationofCoefficientValuesTheformulasfortheregressioncoefficientsb0,b1,b2,...bpinvolvetheuseofmatrixalgebra.Wewillrelyoncomputersoftwarepackagestoperformthecalculations. Theyearsofexperience,scoreontheaptitudetesttest,andcorrespondingannualsalary($1000s)forasampleof20programmersisshownonthenextslide.Example:ProgrammerSalarySurveyMultipleRegressionModelAsoftwarefirmcollecteddataforasampleof20computerprogrammers.Asuggestionwasmadethatregressionanalysiscouldbeusedtodetermineifsalarywasrelatedtotheyearsofexperienceandthescoreonthefirm’sprogrammeraptitudetest.47158100166921056846337810086828684758083918873758174877994708924.043.023.734.335.838.022.223.130.033.038.026.636.231.629.034.030.133.928.230.0Exper.(Yrs.)TestScoreTestScoreExper.(Yrs.)Salary($000s)Salary($000s)MultipleRegressionModel Supposewebelievethatsalary(y)isrelatedtotheyearsofexperience(x1)andthescoreontheprogrammeraptitudetest(x2)bythefollowingregressionmodel: MultipleRegressionModelwhere
y=annualsalary($000) x1=yearsofexperience
x2=scoreonprogrammeraptitudetesty=
0+
1x1+
2x2+
SolvingfortheEstimatesof
0,
1,
2
InputDataLeastSquaresOutputx1
x2
y47824710043......38930ComputerPackageforSolvingMultipleRegressionProblemsb0=b1=b2=R2=etc.Excel’sRegressionEquationOutputNote:ColumnsF-Iarenotshown.SolvingfortheEstimatesof
0,
1,
2EstimatedRegressionEquationSALARY=3.174+1.404(EXPER)+0.251(SCORE)Note:Predictedsalarywillbeinthousandsofdollars.InterpretingtheCoefficients Inmultipleregressionanalysis,weinterpreteachregressioncoefficientasfollows:birepresentsanestimateofthechangeinycorrespondingtoa1-unitincreaseinxiwhenallotherindependentvariablesareheldconstant. Salaryisexpectedtoincreaseby$1,404for eachadditionalyearofexperience(whenthevariable
scoreonprogrammerattitudetestisheldconstant).b1=1.404InterpretingtheCoefficients Salaryisexpectedtoincreaseby$251foreach additionalpointscoredontheprogrammeraptitude test(whenthevariableyearsofexperienceisheld constant).b2=0.251InterpretingtheCoefficientsMultipleCoefficientofDeterminationRelationshipAmongSST,SSR,SSEwhere:
SST=totalsumofsquares
SSR=sumofsquaresduetoregression
SSE=sumofsquaresduetoerrorSST=SSR+SSE=+Excel’sANOVAOutputMultipleCoefficientofDeterminationSSRSSTMultipleCoefficientofDeterminationR2=500.3285/599.7855=.83418R2=SSR/SSTAdjustedMultipleCoefficientofDeterminationThevarianceof
,denotedby
2,isthesameforallvaluesoftheindependentvariables.Theerror
isanormallydistributedrandomvariablereflectingthedeviationbetweentheyvalueandtheexpectedvalueofygivenby
0+
1x1+
2x2+..+
pxp.AssumptionsAbouttheErrorTerm
Theerror
isarandomvariablewithmeanofzero.Thevaluesof
areindependent.Insimplelinearregression,theFandttestsprovidethesameconclusion.TestingforSignificanceInmultipleregression,theFandttestshavedifferentpurposes.TestingforSignificance:FTestTheFtestisreferredtoasthetestforoverall
significance.TheFtestisusedtodeterminewhetherasignificantrelationshipexistsbetweenthedependentvariableandthesetofalltheindependentvariables.Aseparatettestisconductedforeachoftheindependentvariablesinthemodel.IftheFtestshowsanoverallsignificance,thettestisusedtodeterminewhethereachoftheindividualindependentvariablesissignificant.TestingforSignificance:tTestWerefertoeachofthesettestsasatestforindividual
significance.TestingforSignificance:FTestHypothesesRejectionRuleTestStatisticsH0:
1=
2=...=
p=0Ha:Oneormoreoftheparametersisnotequaltozero.F=MSR/MSERejectH0ifp-value<
aorifF>F
,whereF
isbasedonanFdistributionwithpd.f.inthenumeratorandn-p-1d.f.inthedenominator.FTestforOverallSignificanceHypothesesH0:
1=
2=0Ha:Oneorbothoftheparametersisnotequaltozero.RejectionRuleFor
=.05andd.f.=2,17;F.05=3.59RejectH0ifp-value<.05orF
>3.59Excel’sANOVAOutputFTestforOverallSignificancep-valueusedtotestforoverallsignificanceFTestforOverallSignificanceTestStatisticsF=MSR/MSE=250.16/5.85=42.76Conclusionp-value<.05,sowecanrejectH0.(Also,F=42.76>3.59)TestingforSignificance:tTestHypothesesRejectionRuleTestStatisticsRejectH0ifp-value<
aorift
<-t
ort
>
t
wheret
isbasedonatdistributionwithn-p-1degreesoffreedom.tTestforSignificanceofIndividualParametersHypothesesRejectionRuleFor
=.05andd.f.=17,t.025=2.11RejectH0ifp-value<.05,orift
<-2.11ort
>2.11Excel’sRegressionEquationOutputNote:ColumnsF-Iarenotshown.tTestforSignificanceofIndividualParameterststatisticandp-valueusedtotestfortheindividualsignificanceof“Experience”Excel’sRegressionEquationOutputNote:ColumnsF-Iarenotshown.tTestforSignificanceofIndividualParameterststatisticandp-valueusedtotestfortheindividualsignificanceof“TestScore”tTestforSignificanceofIndividualParametersTestStatisticsConclusionsRejectboth
H0:
1=0andH0:
2=0.Bothindependentvariablesaresignificant.TestingforSignificance:MulticollinearityThetermmulticollinearityreferstothecorrelationamongtheindependentvariables.Whentheindependentvariablesarehighlycorrelated(say,|r|>.7),itisnotpossibletodeterminetheseparateeffectofanyparticularindependentvariableonthedependentvariable.TestingforSignificance:MulticollinearityEveryattemptshouldbemadetoavoidincludingindependentvariablesthatarehighlycorrelated.Iftheestimatedregressionequationistobeusedonlyforpredictivepurposes,multicollinearityisusuallynotaseriousproblem.UsingtheEstimatedRegressionEquation
forEstimationandPredictionTheproceduresforestimatingthemeanvalueofyandpredictinganindividualvalueofyinmultipleregressionaresimilartothoseinsimpleregression.Wesubstitutethegivenvaluesofx1,x2,...,xpintotheestimatedregressionequationandusethecorrespondingvalueofyasthepointestimate.UsingtheEstimatedRegressionEquation
forEstimationandPredictionSoftwarepackagesformultipleregressionwilloftenprovidetheseintervalestimates.Theformulasrequiredtodevelopintervalestimatesforthemeanvalueofy
andforanindividualvalueofyarebeyondthescopeofthetextbook.^Inmanysituationswemustworkwithcategorical
independentvariables
suchasgender(male,female),methodofpayment(cash,check,creditcard),etc.Forexample,x2mightrepresentgenderwherex2=0indicatesmaleandx2=1indicatesfemale.CategoricalIndependentVariablesInthiscase,x2iscalledadummyorindicatorvariable. Theyearsofexperience,thescoreontheprogrammeraptitudetest,whethertheindividualhasarelevantgraduatedegree,andtheannualsalary($000)foreachofthesampled20programmersareshownonthenextslide.CategoricalIndependentVariablesExample:ProgrammerSalarySurvey Asanextensionoftheprobleminvolvingthecomputerprogrammersalarysurvey,supposethatmanagementalsobelievesthattheannualsalaryisrelatedtowhethertheindividualhasagraduatedegreeincomputerscienceorinformationsystems.47158100166921056846337810086828684758083918873758174877994708924.043.023.734.335.838.022.223.130.033.038.026.636.231.629.034.030.133.928.230.0Exper.(Yrs.)TestScoreTestScoreExper.(Yrs.)Salary($000s)Salary($000s)Degr.NoYesNoYesYesYesNoNoNoYesDegr.YesNoYesNoNoYesNoYesNoNoCategoricalIndependentVariablesEstimatedRegressionEquation^where:
y=annualsalary($1000)
x1=yearsofexperience
x2=scoreonprogrammerapt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 慢性病防控中的健康公平性策略分析
- 慢性病管理临床带教中人文支持策略
- 慢性病急性发作应对:医患信任下的紧急沟通策略
- 慢性病健康传播持续性干预效果分析
- 慢性疼痛的心理评估与干预策略
- 慢性支气管扩张症HRCT随访策略优化
- 慢性呼吸疾病稳定期营养免疫维持策略
- 感染性心内膜炎脾切除术后患者心理康复的干预策略
- 六项附加扣除培训课件
- 患者视角下电子知情同意书体验提升策略
- 药事管理与药物治疗学委员会章程
- 高等混凝土结构第一、二章
- 中图版地理七年级上册知识总结
- 大连理工大学固态相变各章节考点及知识点总节
- 肿瘤科专业组药物临床试验管理制度及操作规程GCP
- 统编版四年级下册语文第二单元表格式教案
- 测量系统线性分析数据表
- 上海农贸场病媒生物防制工作标准
- 第三单元课外古诗词诵读《太常引·建康中秋夜为吕叔潜赋》课件
- YY 0334-2002硅橡胶外科植入物通用要求
- GB/T 5836.1-1992建筑排水用硬聚氯乙烯管材
评论
0/150
提交评论