2017cfa二级前导固定收益_第1页
2017cfa二级前导固定收益_第2页
2017cfa二级前导固定收益_第3页
2017cfa二级前导固定收益_第4页
2017cfa二级前导固定收益_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

TopicWeightingsinCFALevelII

TOPICAREA

LEVELⅠ

LEVELⅡ

EthicalandProfessionalStandards(total)

15

10-15

QuantitativeMethods

12

5-10

Economics

10

5-10

FinancialStatementAnalysts

20

15-20

CorporateFinance

7

5-15

InvestmentTools(total)

64

40-70

AnalysisofEquityInvestments

10

15-25

AnalysisofFixedIncomeInvestments

10

10-20

AnalysisofDerivatives

5

5-15

AnalysisofAlternativeInvestments

4

5-10

AssetValuation(total)

29

35-70

PortfolioManagement(total)

7

5-10

TOTAL 100 100

Framework

FixedIncome

R35Thetermstructureandinterestratedynamics

R36Thearbitrage-freevaluationframework

R37Valuationandanalysis:BondswithEmbeddedOptions

R38CreditAnalysisModels

R39Creditdefaultswaps

Framework

BondswithEmbeddedOptions

YieldCurve

YieldSpread

BondValuation

InterestRateRiskAnalysis

CreditRiskAnalysis

CreditDefaultSwaps

BondswithEmbeddedOptions

FixedIncome

Callablebond

Callprovisionsarebeneficialtotheissuer.

Callablebondoffersahigheryield(lowerprice)thanidenticalnoncallablebond

Valuecallablebond=valueofidenticalnoncallablebond-calloptionvalue

Ifinterestratesfall

Issuercanretirethebond,andreplaceitwithlowercouponbonds.

Threestylesofexerciseforcallablebonds:

Americanstyle:canbecalledanytimeafterthefirstcalldate.

Europeanstyle:canonlybecalledonthecalldatespecified.

Bermudastyle:canbecalledonspecifieddatesafterthefirstcalldate,oftenoncouponpaymentdates.

Thepriceappreciationofcallablebondislimited.

Putablebond

Putablebondsarebeneficialtothebondholders.

Ifinterestratesrise

Thebondholderscansellthebondbacktotheissuerandgetcash.

Whenthebondisput,theproceedscanbereinvestedatahigherinterestrate.

Putablebondshavealoweryieldandhigherpricethansimilarnon-putablebonds.

Valueofputablebonds=valueofanidenticalnonputablebonds+putoptionvalue.

Effectofvolatilityonthearbitrage-freevalueofanoption

Interestratevolatilityeffectonthevalueofacallableorputablebond:

Thevaluesofcallandputoptionsincreasewheninterestratevolatilityincreases

Thevalueofacallablebonddecreases

Thevalueofaputablebondincreases

Thevalueofastraightbondisunaffectedbychangesinthevolatilityofinterestrate

volatilitychangeoptionvaluechangebondprice/valuechange

Aconvertiblebondincludesanembeddedcalloption.Theoptionisslightlydifferentfromtheembeddedoptioninacallablebond.

Theconvertiblebondholderownsthecalloption,theissuerownsthecalloptioninacallablebond.

Theholderhastherighttobuyshareswithabondthatchangesinvalue,notwithcashatafixedexerciseprice.

Convertiblebondsarebeneficialtothebondholders.

Valueconvertiblebond=valueofidenticalnoncallablebond+calloption(onstock)value

Keytermsofconversionprovision:

Conversionprice:sharepricewhentheconvertiblebondcanbeconvertedintoshares.

Conversionratio:thenumberofcommonshareseachbondcanbeconvertedinto.

Conversionratio=parvalue/conversionprice

Conversionvalue:valueofconversionbondifconvertedrightnow.

Conversionvalue=currentshare*conversionratio

Conversionpremium:differencebetweentheconvertiblebond’spriceandconversionvalue

Conversionparity:

Parity:conversionvalue=convertiblebond’sprice

Aboveparity:conversionvalue>convertiblebond’sprice

Belowparity:conversionvalue<convertiblebond’sprice

Valuationofconvertiblebond

Noncallable/nonputableconvertiblebondvalue

=Straightvalueofbond

+Valueofthecalloptiononthestock

Mostconvertiblebondsarecallable,givingtheissuertherighttocalltheissuepriortomaturity.

Callableconvertiblebondvalue

=Straightvalueofbond

+Valueofthecalloptiononthestock

-Valueofthecalloptiononthebond

Callableandputableconvertiblebondvalue

=Straightvalueofbond

+Valueofthecalloptiononthestock

-Valueofthecalloptiononthebond

+Valueoftheputoptiononthebond

Stockpricevolatility↓=>Valueofthecalloptiononthestock↓=>convertiblebondvalue↓

Stockpricevolatility↑=>Valueofthecalloptiononthestock↑

=>convertiblebondvalue↑

Stockprice↓=>thereturnsonconvertiblebondsexceedthoseofthestock

Reason:Theconvertiblebond’spricehasafloor=itsstraightbondvalue.

Stockprice↑=>thebondwillunderperform

Reason:conversionpremium.

Stockpriceremainsstable=>thereturnsonconvertiblebondsexceedthoseofthestock

Reason:Thecouponpaymentsreceivedfromthebond,assumingnochangeininterestratesortheyieldorcreditriskoftheissuer.

Floating-RateBond

CouponRate

quotedmargin

referencerate

T

Couponrate= +

Suchas:

LIBOR;

U.S.Treasuryyield

Itisaconstantvalue.

Itisoftenquotedinbasispoint.

Occasionally,thespreadisnotfixe,calledvariable-ratenote.

Thecouponratedeterminedatthecouponresetdateistheratethattheissuerpromisestopayatthenextcoupondate.

Thenew1-yearrateatthattimewilldeterminetherateofinterestpaidattheendofthenextyear.Mostfloaterpayquarterlyandarebasedonaquarterly(90-day)referencerate.

Thereferenceratemustmatchthefrequencywithwhichthecouponrateonthebondisreset.

Floaterwithcapandfloor

Floatingratebond(floater):

Optionsinfloating-ratebonds(floaters)areexercisedautomaticallydependingonthecourseofinterestrates—thatis,ifthecouponraterisesorfallsbelowthethreshold,thecaporfloor

Thecappedfloaterprotectstheissueragainstrisinginterestratesandisthusanissueroption

Valueofcappedfloater=Valueof‘straight’bond–Valueofembeddedcap

Thefloorfloaterprotectstheinvestoragainstdecliningandthusoffersprotectionfromfallinginterestrates

Valueofflooredfloater=Valueof‘straight’bond+Valueofembeddedfloor

YieldCurve

FixedIncome

YieldCurve

Yieldcurveshowsthetermstructureofinterestratesbydisplayingyieldsacrossdifferentmaturities.

Spotcurve

Forwardcurve

Yieldcurveforcouponbonds

Parcurve

SpotCurve

Aspotinterestrate(spotrate)isarateofinterestonasecuritythatmakesasinglepaymentatafuturepointintime.

Discountfactor:thediscountfactor,P(T)

P(T) 1

1r(T)T

Spotyieldcurve(spotcurve):thespotrate,r(T),forarangeofmaturitiesinyearsT>0

Theannualizedreturnonanoption-freeanddefault-risk-freezero-couponbond(zeroforshort)withasinglepaymentofprincipalatmaturity.

Theshapeandlevelofthespotyieldcurvearedynamic

ForwardRates:borrowing/lendingrateforaloantobemadeatsomefuturedate.Marginalreturnforextendingthetime-to-maturityforanadditionalperiod

E.g.Theint.ofa1-yearloanthatwouldbemade2yearsfromnow.Notation:f(2,1)rateofa1-yearloantobemade2yearsfromnow.

Forwardratesmodel(therelationshipbetweenspotrateandforwardrate):

1r(T*T)(T*T)1r(T*)T*1f(T*,T)T

DiscountFactor:F(T*,T)

F(T*,T) 1

1f(T*,T)T

F(T*,T)theforwardpriceofa$1parzero-couponbondmaturingattimeT*+TdeliveredattimeT*

F(T*,T)thediscountfactorassociatedwiththeforwardrate

Forwardcurve:Thetermstructureofforwardratesforaloanmadeonaspecificinitiationdate.

Forwardpricingmodel:

Describesthevaluationofforwardcontracts.

Theno-arbitrageargumentthatisusedtoderivethemodelisfrequentlyusedinmodernfinancialtheory

Tradablesecuritieswithidenticalcashflowpaymentsmusthavethesameprice.Otherwise,traderswouldbeabletogeneraterisk-freearbitrageprofits.

Applyingthisargumenttovalueaforwardcontract

PT*TPT*FT*,T

ForwardcontractpricethatdeliversaT-year-maturitybondattimeT*

ForwardPricingModel

usingforwardpricingmodel

F T*,T

PT*T

PT*

Yieldcurveforcouponbonds

YieldtoMaturity(YTM):Internalrateofreturn,impliedmarketdiscountrate

Calculation:iteration,backout

Annual-couponbond

bondprice= CPN1 + CPN2 +

(1+YTM) (1+YTM)2

Criticalassumptions:

holdthebonduntilmaturity

full,timelycoupon,principalpayments(nodefault)

couponsarereinvestedatoriginalYTM

YieldcurveforcouponbondsshowstheYTMforcouponbondsatvariousmaturities,whichcanbecalculatedbylinearinterpolation

Realizedreturnonabond

Threesourcesofreturn:

Couponandprincipalpayments

Reinvestmentofcouponpayments

Capitalgainorlossifbondissoldbeforematurity

Totalreturn:futurevalueofreinvestedcouponinterestpaymentsandthesaleprice(parvalueifthebondisheldtomaturity)

Annualizedholdingperiodreturn:calculatedasthecompoundannualreturnearnedfromtheholdingperiod.

annualzedholdingperiodreturn=(totalreturn)1n1

bondprice

Parcurve

Theparcurverepresentstheyieldstomaturityoncoupon-payinggovernmentbonds,pricedatpar,overarangeofmaturities.

recentlyissued("ontherun")bondsaretypicallyusedtocreatetheparcurvebecausenewissuesaretypicallypricedatorclosetopar.

Thezero-couponratesaredeterminedbyusingtheparyieldsandsolvingforthezero-couponratesonebyone,inorderfromearliesttolatestmaturities,viaaprocessofforwardsubstitutionknownasbootstrapping.

YieldSpread

FixedIncome

YieldSpread

Benchmarkspread:ayieldspreadrelativetoabenchmarkbond.

G-spread:thebenchmarkisgovernmentbondyield

Interpolatedspread(I-spread):thebenchmarkisswaprate

Zero-volatilityspread(Z-spread):thespreadthatmustbeaddedtoeachrateonthebenchmarkyieldcurvetomakethepresentvalueofabondequaltoitsprice.

G-Spread

Bond

Couponrate

Time-to-maturity

Price

U.K.GovernmentBenchmarkBond

2%

3years

100.25

U.K.CorporateBond

5%

3years

100.65

Bothbondspayinterestannually.Thecurrentthree-yearEURinterestrateswapbenchmarkis2.12%.TheG-spreadinbasispoints(bps)ontheU.K.corporatebondisclosestto:

264bps.

285bps.

300bps.

Correctanswer:B

6%Zbondarecurrentlyyield2.35%andmaturein1.6years.ComputetheI-spreadfromtheprovidedswapcurve

Tenor

Swaprate

0.5

1.00%

1

1.25%

1.5

1.35%

2

1.50%

CorrectAnswer:

Linearinterpolation:

1.6yearswaprate=1.5yearswaprate+0.10(1.50-1.35)

0.50

=1.38%

I-Spread

I-spread=yieldonthebond-swaprate=2.35-1.38=0.62%

I-spreadonlyreflectscompensationforcreditandliquidityrisks.

Z-Spread

Z-spread:spreadwhenaddedtoeachspotrateonthedefault-freespotcurvemakesthepresentvalueofabond’scashflowsequaltothebond’smarketprice,aspreadovertheentirespotratecurve

Zerovolatility:assumptionofzerointerestratevolatility.

Z-spreadisnotappropriateforvaluingbondswithembeddedoptions.

Example:

one-yearspotrateis4%andthetwo-yearspotrateis5%.Themarketpriceofatwo-yearbondwithannualcouponpaymentsof8%is

$104.12.TheZ-spreadisthespreadthatbalancesthefollowing

equation:

$104.12 $8 $108(10.04Z) (10.05Z)2

Option-adjustedspread(OAS):usedforbondswithembeddedoptions.

Callablebond:ZS>OAS

Putablebond:ZS<OAS

Optioncost=Z-spread–OAS

Anoption-adjusted-spread(OAS)onacallablebondistheZ-spreadminusthevalueoftheembeddedcalloptionexpressedinbasispointsperyear.

Anoption-adjusted-spread(OAS)onaputablebondistheZ-spreadplusthevalueoftheembeddedcalloptionexpressedinbasispointsperyear.

G/Zspread

Optionrisk

Liquidityrisk

OAS

Creditrisk

CallableBond

Treasury(riskfree)

Arbitrage-FreeValuation

FixedIncome

Arbitrage-freevaluation:anapproachtosecurityvaluationthatdeterminessecurityvaluesthatareconsistentwiththeabsenceofarbitrageopportunities.

Arbitrageopportunitiesareopportunitiesfortradesthatearnrisklessprofitswithoutanynetinvestmentofmoney.

Arbitrageopportunitiesariseasaresultofviolationsofthelawofoneprice.

Thelawofonepricestatesthattwogoodsthatareperfectsubstitutesmustsellforthesamecurrentpriceintheabsenceoftransactioncosts.

Wellfunctioningmarketcomplieswithprincipleofnoarbitrage.

Anyfixed-incomesecurityshouldbethoughtofasapackageorportfolioofzero-couponbondsusingthearbitrage-freeapproach.

Stripping:ThemarketmechanismforUSTreasuriesthatenablesthisapproachisthedealer'sabilitytoseparatethebond'sindividualcashflowsandtradethemaszero-couponsecurities.

Reconstitution:dealerscanrecombinetheappropriateindividualzero-couponsecuritiesandreproducetheunderlyingcouponTreasury

Thearbitrage-freevaluationapproachdoesnotallowamarketparticipanttorealizeanarbitrageprofitthroughstrippingandreconstitution

Arbitrage-freevaluation

Afundamentalprincipleofvaluationisthatthevalueofanyfinancialassetisequaltothepresentvalueofitsexpectedfuturecashflows.

Thisprincipleholdsforanyfinancialassetfromzero-couponbondstointerestrateswaps.Thus,thevaluationofafinancialassetinvolvesthefollowingthreesteps:

Step1Estimatethefuturecashflows.

Step2Determinetheappropriatediscountrateordiscountratesthatshouldbeusedtodiscountthecashflows.

Step3CalculatethepresentvalueoftheexpectedfuturecashflowsfoundinStep1byapplyingtheappropriatediscountrateorratesdeterminedinStep2.

Spotrates:aremarketdiscountratesforsinglepaymentstobemadeinthefuture.

Theno-arbitragepriceofabondiscalculatedusingspotrates:

+ 2

no-arbitrageprice=CPN1 CPN2

(1+S) (1+S)

CPNN+Par(1+S )N

+……+

1 2 N

Example:Treasuryspotrates(expressedassemiannual-pay)areasfollows:6months=4%,1year=5%,1.5year=6%.A1.5-year,4%Treasurynoteistradingat$965.thearbitragetradeandarbitrageprofitare:

Buythebond,sellthepieces,earn$7.09perbond

Sellthebond,buythepieces,earn$7.09perbond

Sellthebond,buythepieces,earn$7.91perbond

CorrectAnswer:A

optionfree;2years;annualcouponrateof7%

???

7.1826%

???(Today)4.5749%

???

5.321%

(Year1)

100

7

100

7

100

7

(Year2)

CorrectAnswer:

???

4.5749%

99.830

7.0

7.1826%

101.594

7.0

5.321%

100

7.0

100

7.0

100

V 1

(1007)

1(1007)

/(17.1826%)$99.830

7.0

1,U 12

V

(1007)

2

1

(1007)/(15.3210%)$101.594

1,L 2 2

V1(99.8307)1(101.5947)/(14.5749%)$102.999

0 2 2

Arbitrage-freevaluation

Zero-couponyieldcurve:Eachknownfuturecashflowisdiscountedattheunderlyingspotrate(alsoknownasthezero-couponyield)

Comparisonbetweenzero-couponyieldcurveandbinomialtree

Valuebondswithembeddedoptions,theratesneedtobeallowedtofluctuate

Thefuturecashflowsareuncertainastheydependonwhethertheembeddedoptionwillbeinthemoney

Thevalueoftheoptiondependsonuncertainfutureinterestrates,theunderlyingcashflowsarealsodependentonthesamefutureinterestrates.

InterestRateRisk

FixedIncome

InterestRateRisk

Interestrisk

利率风险:即债券价格对利率变化的敏感程度,价格对利率变化越敏感,价格波动的可能性就越高

通常用久期duration来衡量利率风险,久期越高,利率风险越高

duration-percentagechangeinbondprice

yieldchangeinpercent

Exercise:Abondhasadurationof7.2,iftheyielddecreasesfrom8.3%to7.9%,calculatetheapproximatepercentagechangeinthebondprice

Percentagepricechange=-duration×yieldchangein%

CalculationofDuration

n

Macaulayduration

t1tPVCFt

n

[t(PVCFt

/P0)]

Duration

PVCFt(P0) t1

Modifiedduration= Macaulayduration

1+periodicmarketyield

Effectiveduration= V--V+

2创V0 Dcurve

Effectivedurationandmodifiedduration

Themodifiedduration:conventionalyielddurationstatistic,measuressensitivityofthebondpricewithrespecttothebond'sownyield-to-maturity.

Effectiveduration:curveduration,measuresthepricesensitivitywithrespecttochangesintheU.S.Treasuryparcurve.

Foratraditionaloption-freebond:

Themodifieddurationandeffectivedurationonatraditionaloption-freebondarenotidentical.

Thedifferencenarrowswhentheyieldcurveisflatter,thetime-to-maturityisshorter,andthebondispricedclosertoparvalue(sothatthedifferencebetweenthecouponrateandtheyield-to-maturityissmaller).

Themodifieddurationandeffectivedurationonanoption-freebondareidenticalonlyintherarecircumstanceofanabsolutelyflatyieldcurve.

Interpretingduration:

Durationistheslopeoftheprice-yieldcurveatthebond’scurrentYTM.(thefirstderivativeoftheprice-yieldcurvewithrespecttoyield)

Durationisaweightedaverageoftime(inyears)untilcashflowwillbereceived.Theweightsaretheproportionsofthetotalbondvaluethateachcashflowrepresents.

Durationistheapproximatepercentagechangeinpriceof1%changeinyield.(pricesensitivity)

Effectsofbondcharacteristicsonduration:

Longermaturity,higherduration.

Lowercoupon,higherduration.

Lowermarketyield,higherduration

Bondwithembeddedoptions(callablebond&putablebond)haslowerduration.

Comparisonofeffectivedurationsamongcallable,putableandstraightbonds

Effectiveduration(callable)≤effectiveduration(straight)

Effectiveduration(putable)≤effectiveduration(straight)

Effectiveduration(zero-coupon)≈maturityofthebond

Effectivedurationoffixed-ratebond<maturityofthebond

Effectivedurationoffloater≈time(years)tonextreset

Levelofinterestrates

Interestratedeclines:thevalueofacallablebondriselessrapidlythanthevalueofanotherwise-equivalentstraightbond

Interestrateincrease:thevalueofaputablebondfallslessrapidlythanthevalueofanotherwise-equivalentstraightbond

Shapeoftheyieldcurve

Calloption

Interestratedecline,thevalueofanembeddedcalloptionincreases

Putoption

Interestrateincreases,thevalueofaputoptionincreases

Effectivedurations:normallycalculatedbyaveragingthechangesresultingfromshiftingthebenchmarkyieldcurveupanddownbythesameamount.

Thiscalculationworkswellforoption-freebonds

Inthepresenceofembeddedoptions,theresultscanbemisleading.

Theproblemisthatwhentheembeddedoptionisinthemoney,thepriceofthebondhaslimitedupsidepotentialifthebondiscallableorlimiteddownsidepotentialifthebondisputable.

Thepricesensitivityofbondswithembeddedoptionsisnotsymmetricaltopositiveandnegativechangesininterestratesofthesamemagnitude.

One-sideddurations:durationsthatapplyonlywheninterestratesgoup(or,alternatively,onlywhenratesgodown.

betteratcapturingtheinterestratesensitivityofacallableorputablebondthanthe(two-sided)effectiveduration

Whentheunderlyingoptionisat(ornear)money,callablebondswillhavelowerone-sideddown-durationthanone-sidedup-duration;thepricechangeofacallablewhenratesfallissmallerthanthepricechangeforanequalincreaseinrates.

Conversely,aputablebondwillhavelargerone-sideddown-durationthanone-sidedup-duration.

PortfolioDuration

PortfolioDuration

TheMacaulayandmodifieddurationsfortheportfolioarecalculatedastheweightedaverageofthestatisticsfortheindividualbonds.Thesharesofoverallportfoliomarketvaluearetheweights.

Portfolioduration=w1D1+w2D2+……+wnDn

Themainadvantagetothesecondapproachisthatitiseasilyusedasameasureofinterestraterisk.

Limitations:themeasureofportfoliodurationimplicitlyassumesa

parallelshiftintheyieldcurve.

Aparallelyieldcurveshiftimpliesthatallrateschangebythesameamountinthesamedirection.

Inreality,interestratechangesfrequentlyresultinasteeperorflatteryieldcurve.(non-parallelshifts→keyrateduration)

YieldCurveRisk

Yieldcurverisk:risktoportfoliovaluearisingfromunanticipatedchangesintheyieldcurve,canbemanagedonthebasisofseveralmeasuresofsensitivitytoyieldcurvemovements

Managingyieldcurverisk

Effectiveduration:measuresthesensitivityofabond'spricetoasmallparallelshiftinabenchmarkyieldcurve

Addressriskassociatedwithparallelyieldcurvechanges

keyrateduration:measuresabond'ssensitivitytoasmallchangeinabenchmarkyieldcurveataspecificmaturitysegment

allowsidentificationandmanagementof"shapingrisk"—thatis,sensitivitytochangesintheshapeofthebenchmarkyieldcurve

Keyrateduration

Durationisanadequatemeasureofbondpriceriskonlyforsmallparalleledshiftsintheyieldcurve.

Akeyratedurationisdefinedastheapproximatepercentagechangeinthevalueofabondorbondportfolioinresponsetoa100basispointchangeinthecorrespondingkeyrate,holdingallotherratesconstant.(fornon-parallelshifts)

Example:

Bond

(zerocoupon)

Weight

D1

D2

D3

D4

KeyRateDuration

2year

10

2

0.2

10year

20

10

2.0

20year

40

20

8.0

25year

30

25

7.5

Portfolio

100

17.7

Example:non-parallelshift

Bond(zerocoupon)

Weight

D1

D2

D3

D4

KeyRateDuration

Shifts

Changesinvalue

2year

10

2

0.2

+1%

-0.2%

10year

20

10

2.0

+1.5%

-3.0%

20year

40

20

8.0

+0.8%

-6.4%

25year

30

25

7.5

-1%

7.5%

Portfolio

100

17.7

-2.1%

Convexityisameasureofthecurvatureoftheprice-yieldcurve.

Themorecurvedtheprice-yieldrelationis,theworseourduration-basedestimatesofbondpricechangesinresponsetochangesinyieldare DP

=[-

P

MD碊( y)]+

轾犏臌0.5创Conv (Dy)2

Theconvexityadjustmentisalwayspositivewhenconvexityispositive

ForanOption-freebondtheprice-yieldcurveisconvextowardtheorigin

Pricefallsarateasyield

Callable

Putable

price/yieldrelationshipwillbemoreconvexwhenyieldincrease

Price(%ofPar)

Calloptionvalue

Price

102

Callablebond

Option-freebond

Option-freebond

putablebond

Valueoftheputoption

YieldNegativeconvexity y’PositiveConvexity

Yield

y’

Comparisonamongeffectiveconvexitiesofcallable,putableandstraightbonds

Straightbondshavepositiveeffectiveconvexity

Theincreaseinthevalueofanoption-freebondishigherwhenratesfallthanthedecreaseinvaluewhenratesincreasebyanequalamount

Callablebondsareunlikelytobecalledandwillexhibitpositiveconvexitywhenratesarehigh

Theeffectiveconvexityturnsnegativewhentheunderlyingcalloptionisnearthemoney

Theupsidepotentialofthebond’spriceislimitedduetothecall(whilethedownsideisnotprotected)

Putablebondsexhibitpositiveconvexitythroughout

CreditRisk

FixedIncome

Creditriskistheriskassociatedwithlossesstemmingfromthefailureofaborrowertomaketimelyandfullypaymentsofinterestorprincipal.Creditriskdependson:

Probabilityofdefault,ordefaultprobability,istheprobabilitythataborrowerdefaults–thatis,failstopayinterestorrepayprincipalwhendue.

lossgivendefault,intheeventofdefault,istheportionofabond’s

value(includingunpaidinterest)aninvestorloses.

Recoveryrateisthepercentageoftheprincipalamountrecoveredintheeventofdefault.Lossgivendefault(%)=100-recoveryrate

Expectedloss=Defaultprobability*Lossseveritygivendefault

Dependsonthestateoftheeconomy:duringboomtimes,theprobabilityofdefaultandlossgivendefaultwillbelower

CapitalStructure:thecompositionanddistributionacrossoperatingunitsofacompany’sdebtandequity,includingbankdebt,bondsofallseniorityrankings,preferredstock,andcommonequity.

FirstLienLoan

SeniorityRanking

SeniorUnsecured

SeniorSecured

Subordinated

SeniorSubordinated

JuniorSubordinated

ThefourCsofcreditanalysis

Capacityreferstotheabilityoftheborrowertomakeitsdebtpaymentsontime.

Collateralreferstothequalityandvalueoftheassetssupportingthe

issuer’sindebtedness.

Covenantsarethetermsandconditionsoflendingagreementsthattheissuermustcomplywith.

Characterreferstothequalityofmanagement

Creditscoringmodel

Ordinalrankingsjustcategorizeborrowerfromhighesttolowestrisk,butdonotindicatethedegreetowhichthecreditriskdiffers.

E.g.Acreditscoreof450isnotequaltohalfthecreditriskofanindividualwithacreditscoreof900.

Creditscoringisusedforsmallbusinessesandindividuals.Characteristicsofcreditscoring:

Creditscoresareordinalrankings.

Notpercentilerankings,andthedistributionofcreditscoreschangeovertime.

Donotexplicitlytakeintoaccountcurrenteconomicconditions.i.e.donotimprovewiththeeconomy.

Pressurefromusersofcreditscores(lenders)toprioritizestabilityinscoresovertime

Donottakeintoaccountdifferingprobabili

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论