版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TopicWeightingsinCFALevelII
TOPICAREA
LEVELⅠ
LEVELⅡ
EthicalandProfessionalStandards(total)
15
10-15
QuantitativeMethods
12
5-10
Economics
10
5-10
FinancialStatementAnalysts
20
15-20
CorporateFinance
7
5-15
InvestmentTools(total)
64
40-70
AnalysisofEquityInvestments
10
15-25
AnalysisofFixedIncomeInvestments
10
10-20
AnalysisofDerivatives
5
5-15
AnalysisofAlternativeInvestments
4
5-10
AssetValuation(total)
29
35-70
PortfolioManagement(total)
7
5-10
TOTAL 100 100
Framework
FixedIncome
R35Thetermstructureandinterestratedynamics
R36Thearbitrage-freevaluationframework
R37Valuationandanalysis:BondswithEmbeddedOptions
R38CreditAnalysisModels
R39Creditdefaultswaps
Framework
BondswithEmbeddedOptions
YieldCurve
YieldSpread
BondValuation
InterestRateRiskAnalysis
CreditRiskAnalysis
CreditDefaultSwaps
BondswithEmbeddedOptions
FixedIncome
Callablebond
Callprovisionsarebeneficialtotheissuer.
Callablebondoffersahigheryield(lowerprice)thanidenticalnoncallablebond
Valuecallablebond=valueofidenticalnoncallablebond-calloptionvalue
Ifinterestratesfall
Issuercanretirethebond,andreplaceitwithlowercouponbonds.
Threestylesofexerciseforcallablebonds:
Americanstyle:canbecalledanytimeafterthefirstcalldate.
Europeanstyle:canonlybecalledonthecalldatespecified.
Bermudastyle:canbecalledonspecifieddatesafterthefirstcalldate,oftenoncouponpaymentdates.
Thepriceappreciationofcallablebondislimited.
Putablebond
Putablebondsarebeneficialtothebondholders.
Ifinterestratesrise
Thebondholderscansellthebondbacktotheissuerandgetcash.
Whenthebondisput,theproceedscanbereinvestedatahigherinterestrate.
Putablebondshavealoweryieldandhigherpricethansimilarnon-putablebonds.
Valueofputablebonds=valueofanidenticalnonputablebonds+putoptionvalue.
Effectofvolatilityonthearbitrage-freevalueofanoption
Interestratevolatilityeffectonthevalueofacallableorputablebond:
Thevaluesofcallandputoptionsincreasewheninterestratevolatilityincreases
Thevalueofacallablebonddecreases
Thevalueofaputablebondincreases
Thevalueofastraightbondisunaffectedbychangesinthevolatilityofinterestrate
volatilitychangeoptionvaluechangebondprice/valuechange
Aconvertiblebondincludesanembeddedcalloption.Theoptionisslightlydifferentfromtheembeddedoptioninacallablebond.
Theconvertiblebondholderownsthecalloption,theissuerownsthecalloptioninacallablebond.
Theholderhastherighttobuyshareswithabondthatchangesinvalue,notwithcashatafixedexerciseprice.
Convertiblebondsarebeneficialtothebondholders.
Valueconvertiblebond=valueofidenticalnoncallablebond+calloption(onstock)value
Keytermsofconversionprovision:
Conversionprice:sharepricewhentheconvertiblebondcanbeconvertedintoshares.
Conversionratio:thenumberofcommonshareseachbondcanbeconvertedinto.
Conversionratio=parvalue/conversionprice
Conversionvalue:valueofconversionbondifconvertedrightnow.
Conversionvalue=currentshare*conversionratio
Conversionpremium:differencebetweentheconvertiblebond’spriceandconversionvalue
Conversionparity:
Parity:conversionvalue=convertiblebond’sprice
Aboveparity:conversionvalue>convertiblebond’sprice
Belowparity:conversionvalue<convertiblebond’sprice
Valuationofconvertiblebond
Noncallable/nonputableconvertiblebondvalue
=Straightvalueofbond
+Valueofthecalloptiononthestock
Mostconvertiblebondsarecallable,givingtheissuertherighttocalltheissuepriortomaturity.
Callableconvertiblebondvalue
=Straightvalueofbond
+Valueofthecalloptiononthestock
-Valueofthecalloptiononthebond
Callableandputableconvertiblebondvalue
=Straightvalueofbond
+Valueofthecalloptiononthestock
-Valueofthecalloptiononthebond
+Valueoftheputoptiononthebond
Stockpricevolatility↓=>Valueofthecalloptiononthestock↓=>convertiblebondvalue↓
Stockpricevolatility↑=>Valueofthecalloptiononthestock↑
=>convertiblebondvalue↑
Stockprice↓=>thereturnsonconvertiblebondsexceedthoseofthestock
Reason:Theconvertiblebond’spricehasafloor=itsstraightbondvalue.
Stockprice↑=>thebondwillunderperform
Reason:conversionpremium.
Stockpriceremainsstable=>thereturnsonconvertiblebondsexceedthoseofthestock
Reason:Thecouponpaymentsreceivedfromthebond,assumingnochangeininterestratesortheyieldorcreditriskoftheissuer.
Floating-RateBond
CouponRate
quotedmargin
referencerate
T
Couponrate= +
Suchas:
LIBOR;
U.S.Treasuryyield
Itisaconstantvalue.
Itisoftenquotedinbasispoint.
Occasionally,thespreadisnotfixe,calledvariable-ratenote.
Thecouponratedeterminedatthecouponresetdateistheratethattheissuerpromisestopayatthenextcoupondate.
Thenew1-yearrateatthattimewilldeterminetherateofinterestpaidattheendofthenextyear.Mostfloaterpayquarterlyandarebasedonaquarterly(90-day)referencerate.
Thereferenceratemustmatchthefrequencywithwhichthecouponrateonthebondisreset.
Floaterwithcapandfloor
Floatingratebond(floater):
Optionsinfloating-ratebonds(floaters)areexercisedautomaticallydependingonthecourseofinterestrates—thatis,ifthecouponraterisesorfallsbelowthethreshold,thecaporfloor
Thecappedfloaterprotectstheissueragainstrisinginterestratesandisthusanissueroption
Valueofcappedfloater=Valueof‘straight’bond–Valueofembeddedcap
Thefloorfloaterprotectstheinvestoragainstdecliningandthusoffersprotectionfromfallinginterestrates
Valueofflooredfloater=Valueof‘straight’bond+Valueofembeddedfloor
YieldCurve
FixedIncome
YieldCurve
Yieldcurveshowsthetermstructureofinterestratesbydisplayingyieldsacrossdifferentmaturities.
Spotcurve
Forwardcurve
Yieldcurveforcouponbonds
Parcurve
SpotCurve
Aspotinterestrate(spotrate)isarateofinterestonasecuritythatmakesasinglepaymentatafuturepointintime.
Discountfactor:thediscountfactor,P(T)
P(T) 1
1r(T)T
Spotyieldcurve(spotcurve):thespotrate,r(T),forarangeofmaturitiesinyearsT>0
Theannualizedreturnonanoption-freeanddefault-risk-freezero-couponbond(zeroforshort)withasinglepaymentofprincipalatmaturity.
Theshapeandlevelofthespotyieldcurvearedynamic
ForwardRates:borrowing/lendingrateforaloantobemadeatsomefuturedate.Marginalreturnforextendingthetime-to-maturityforanadditionalperiod
E.g.Theint.ofa1-yearloanthatwouldbemade2yearsfromnow.Notation:f(2,1)rateofa1-yearloantobemade2yearsfromnow.
Forwardratesmodel(therelationshipbetweenspotrateandforwardrate):
1r(T*T)(T*T)1r(T*)T*1f(T*,T)T
DiscountFactor:F(T*,T)
F(T*,T) 1
1f(T*,T)T
F(T*,T)theforwardpriceofa$1parzero-couponbondmaturingattimeT*+TdeliveredattimeT*
F(T*,T)thediscountfactorassociatedwiththeforwardrate
Forwardcurve:Thetermstructureofforwardratesforaloanmadeonaspecificinitiationdate.
Forwardpricingmodel:
Describesthevaluationofforwardcontracts.
Theno-arbitrageargumentthatisusedtoderivethemodelisfrequentlyusedinmodernfinancialtheory
Tradablesecuritieswithidenticalcashflowpaymentsmusthavethesameprice.Otherwise,traderswouldbeabletogeneraterisk-freearbitrageprofits.
Applyingthisargumenttovalueaforwardcontract
PT*TPT*FT*,T
ForwardcontractpricethatdeliversaT-year-maturitybondattimeT*
ForwardPricingModel
usingforwardpricingmodel
F T*,T
PT*T
PT*
Yieldcurveforcouponbonds
YieldtoMaturity(YTM):Internalrateofreturn,impliedmarketdiscountrate
Calculation:iteration,backout
Annual-couponbond
bondprice= CPN1 + CPN2 +
(1+YTM) (1+YTM)2
Criticalassumptions:
holdthebonduntilmaturity
full,timelycoupon,principalpayments(nodefault)
couponsarereinvestedatoriginalYTM
YieldcurveforcouponbondsshowstheYTMforcouponbondsatvariousmaturities,whichcanbecalculatedbylinearinterpolation
Realizedreturnonabond
Threesourcesofreturn:
Couponandprincipalpayments
Reinvestmentofcouponpayments
Capitalgainorlossifbondissoldbeforematurity
Totalreturn:futurevalueofreinvestedcouponinterestpaymentsandthesaleprice(parvalueifthebondisheldtomaturity)
Annualizedholdingperiodreturn:calculatedasthecompoundannualreturnearnedfromtheholdingperiod.
annualzedholdingperiodreturn=(totalreturn)1n1
bondprice
Parcurve
Theparcurverepresentstheyieldstomaturityoncoupon-payinggovernmentbonds,pricedatpar,overarangeofmaturities.
recentlyissued("ontherun")bondsaretypicallyusedtocreatetheparcurvebecausenewissuesaretypicallypricedatorclosetopar.
Thezero-couponratesaredeterminedbyusingtheparyieldsandsolvingforthezero-couponratesonebyone,inorderfromearliesttolatestmaturities,viaaprocessofforwardsubstitutionknownasbootstrapping.
YieldSpread
FixedIncome
YieldSpread
Benchmarkspread:ayieldspreadrelativetoabenchmarkbond.
G-spread:thebenchmarkisgovernmentbondyield
Interpolatedspread(I-spread):thebenchmarkisswaprate
Zero-volatilityspread(Z-spread):thespreadthatmustbeaddedtoeachrateonthebenchmarkyieldcurvetomakethepresentvalueofabondequaltoitsprice.
G-Spread
Bond
Couponrate
Time-to-maturity
Price
U.K.GovernmentBenchmarkBond
2%
3years
100.25
U.K.CorporateBond
5%
3years
100.65
Bothbondspayinterestannually.Thecurrentthree-yearEURinterestrateswapbenchmarkis2.12%.TheG-spreadinbasispoints(bps)ontheU.K.corporatebondisclosestto:
264bps.
285bps.
300bps.
Correctanswer:B
6%Zbondarecurrentlyyield2.35%andmaturein1.6years.ComputetheI-spreadfromtheprovidedswapcurve
Tenor
Swaprate
0.5
1.00%
1
1.25%
1.5
1.35%
2
1.50%
CorrectAnswer:
Linearinterpolation:
1.6yearswaprate=1.5yearswaprate+0.10(1.50-1.35)
0.50
=1.38%
I-Spread
I-spread=yieldonthebond-swaprate=2.35-1.38=0.62%
I-spreadonlyreflectscompensationforcreditandliquidityrisks.
Z-Spread
Z-spread:spreadwhenaddedtoeachspotrateonthedefault-freespotcurvemakesthepresentvalueofabond’scashflowsequaltothebond’smarketprice,aspreadovertheentirespotratecurve
Zerovolatility:assumptionofzerointerestratevolatility.
Z-spreadisnotappropriateforvaluingbondswithembeddedoptions.
Example:
one-yearspotrateis4%andthetwo-yearspotrateis5%.Themarketpriceofatwo-yearbondwithannualcouponpaymentsof8%is
$104.12.TheZ-spreadisthespreadthatbalancesthefollowing
equation:
$104.12 $8 $108(10.04Z) (10.05Z)2
Option-adjustedspread(OAS):usedforbondswithembeddedoptions.
Callablebond:ZS>OAS
Putablebond:ZS<OAS
Optioncost=Z-spread–OAS
Anoption-adjusted-spread(OAS)onacallablebondistheZ-spreadminusthevalueoftheembeddedcalloptionexpressedinbasispointsperyear.
Anoption-adjusted-spread(OAS)onaputablebondistheZ-spreadplusthevalueoftheembeddedcalloptionexpressedinbasispointsperyear.
G/Zspread
Optionrisk
Liquidityrisk
OAS
Creditrisk
CallableBond
Treasury(riskfree)
Arbitrage-FreeValuation
FixedIncome
Arbitrage-freevaluation:anapproachtosecurityvaluationthatdeterminessecurityvaluesthatareconsistentwiththeabsenceofarbitrageopportunities.
Arbitrageopportunitiesareopportunitiesfortradesthatearnrisklessprofitswithoutanynetinvestmentofmoney.
Arbitrageopportunitiesariseasaresultofviolationsofthelawofoneprice.
Thelawofonepricestatesthattwogoodsthatareperfectsubstitutesmustsellforthesamecurrentpriceintheabsenceoftransactioncosts.
Wellfunctioningmarketcomplieswithprincipleofnoarbitrage.
Anyfixed-incomesecurityshouldbethoughtofasapackageorportfolioofzero-couponbondsusingthearbitrage-freeapproach.
Stripping:ThemarketmechanismforUSTreasuriesthatenablesthisapproachisthedealer'sabilitytoseparatethebond'sindividualcashflowsandtradethemaszero-couponsecurities.
Reconstitution:dealerscanrecombinetheappropriateindividualzero-couponsecuritiesandreproducetheunderlyingcouponTreasury
Thearbitrage-freevaluationapproachdoesnotallowamarketparticipanttorealizeanarbitrageprofitthroughstrippingandreconstitution
Arbitrage-freevaluation
Afundamentalprincipleofvaluationisthatthevalueofanyfinancialassetisequaltothepresentvalueofitsexpectedfuturecashflows.
Thisprincipleholdsforanyfinancialassetfromzero-couponbondstointerestrateswaps.Thus,thevaluationofafinancialassetinvolvesthefollowingthreesteps:
Step1Estimatethefuturecashflows.
Step2Determinetheappropriatediscountrateordiscountratesthatshouldbeusedtodiscountthecashflows.
Step3CalculatethepresentvalueoftheexpectedfuturecashflowsfoundinStep1byapplyingtheappropriatediscountrateorratesdeterminedinStep2.
Spotrates:aremarketdiscountratesforsinglepaymentstobemadeinthefuture.
Theno-arbitragepriceofabondiscalculatedusingspotrates:
+ 2
no-arbitrageprice=CPN1 CPN2
(1+S) (1+S)
CPNN+Par(1+S )N
+……+
1 2 N
Example:Treasuryspotrates(expressedassemiannual-pay)areasfollows:6months=4%,1year=5%,1.5year=6%.A1.5-year,4%Treasurynoteistradingat$965.thearbitragetradeandarbitrageprofitare:
Buythebond,sellthepieces,earn$7.09perbond
Sellthebond,buythepieces,earn$7.09perbond
Sellthebond,buythepieces,earn$7.91perbond
CorrectAnswer:A
optionfree;2years;annualcouponrateof7%
???
7.1826%
???(Today)4.5749%
???
5.321%
(Year1)
100
7
100
7
100
7
(Year2)
CorrectAnswer:
???
4.5749%
99.830
7.0
7.1826%
101.594
7.0
5.321%
100
7.0
100
7.0
100
V 1
(1007)
1(1007)
/(17.1826%)$99.830
7.0
1,U 12
V
(1007)
2
1
(1007)/(15.3210%)$101.594
1,L 2 2
V1(99.8307)1(101.5947)/(14.5749%)$102.999
0 2 2
Arbitrage-freevaluation
Zero-couponyieldcurve:Eachknownfuturecashflowisdiscountedattheunderlyingspotrate(alsoknownasthezero-couponyield)
Comparisonbetweenzero-couponyieldcurveandbinomialtree
Valuebondswithembeddedoptions,theratesneedtobeallowedtofluctuate
Thefuturecashflowsareuncertainastheydependonwhethertheembeddedoptionwillbeinthemoney
Thevalueoftheoptiondependsonuncertainfutureinterestrates,theunderlyingcashflowsarealsodependentonthesamefutureinterestrates.
InterestRateRisk
FixedIncome
InterestRateRisk
Interestrisk
利率风险:即债券价格对利率变化的敏感程度,价格对利率变化越敏感,价格波动的可能性就越高
通常用久期duration来衡量利率风险,久期越高,利率风险越高
duration-percentagechangeinbondprice
yieldchangeinpercent
Exercise:Abondhasadurationof7.2,iftheyielddecreasesfrom8.3%to7.9%,calculatetheapproximatepercentagechangeinthebondprice
Percentagepricechange=-duration×yieldchangein%
CalculationofDuration
n
Macaulayduration
t1tPVCFt
n
[t(PVCFt
/P0)]
Duration
PVCFt(P0) t1
Modifiedduration= Macaulayduration
1+periodicmarketyield
Effectiveduration= V--V+
2创V0 Dcurve
Effectivedurationandmodifiedduration
Themodifiedduration:conventionalyielddurationstatistic,measuressensitivityofthebondpricewithrespecttothebond'sownyield-to-maturity.
Effectiveduration:curveduration,measuresthepricesensitivitywithrespecttochangesintheU.S.Treasuryparcurve.
Foratraditionaloption-freebond:
Themodifieddurationandeffectivedurationonatraditionaloption-freebondarenotidentical.
Thedifferencenarrowswhentheyieldcurveisflatter,thetime-to-maturityisshorter,andthebondispricedclosertoparvalue(sothatthedifferencebetweenthecouponrateandtheyield-to-maturityissmaller).
Themodifieddurationandeffectivedurationonanoption-freebondareidenticalonlyintherarecircumstanceofanabsolutelyflatyieldcurve.
Interpretingduration:
Durationistheslopeoftheprice-yieldcurveatthebond’scurrentYTM.(thefirstderivativeoftheprice-yieldcurvewithrespecttoyield)
Durationisaweightedaverageoftime(inyears)untilcashflowwillbereceived.Theweightsaretheproportionsofthetotalbondvaluethateachcashflowrepresents.
Durationistheapproximatepercentagechangeinpriceof1%changeinyield.(pricesensitivity)
Effectsofbondcharacteristicsonduration:
Longermaturity,higherduration.
Lowercoupon,higherduration.
Lowermarketyield,higherduration
Bondwithembeddedoptions(callablebond&putablebond)haslowerduration.
Comparisonofeffectivedurationsamongcallable,putableandstraightbonds
Effectiveduration(callable)≤effectiveduration(straight)
Effectiveduration(putable)≤effectiveduration(straight)
Effectiveduration(zero-coupon)≈maturityofthebond
Effectivedurationoffixed-ratebond<maturityofthebond
Effectivedurationoffloater≈time(years)tonextreset
Levelofinterestrates
Interestratedeclines:thevalueofacallablebondriselessrapidlythanthevalueofanotherwise-equivalentstraightbond
Interestrateincrease:thevalueofaputablebondfallslessrapidlythanthevalueofanotherwise-equivalentstraightbond
Shapeoftheyieldcurve
Calloption
Interestratedecline,thevalueofanembeddedcalloptionincreases
Putoption
Interestrateincreases,thevalueofaputoptionincreases
Effectivedurations:normallycalculatedbyaveragingthechangesresultingfromshiftingthebenchmarkyieldcurveupanddownbythesameamount.
Thiscalculationworkswellforoption-freebonds
Inthepresenceofembeddedoptions,theresultscanbemisleading.
Theproblemisthatwhentheembeddedoptionisinthemoney,thepriceofthebondhaslimitedupsidepotentialifthebondiscallableorlimiteddownsidepotentialifthebondisputable.
Thepricesensitivityofbondswithembeddedoptionsisnotsymmetricaltopositiveandnegativechangesininterestratesofthesamemagnitude.
One-sideddurations:durationsthatapplyonlywheninterestratesgoup(or,alternatively,onlywhenratesgodown.
betteratcapturingtheinterestratesensitivityofacallableorputablebondthanthe(two-sided)effectiveduration
Whentheunderlyingoptionisat(ornear)money,callablebondswillhavelowerone-sideddown-durationthanone-sidedup-duration;thepricechangeofacallablewhenratesfallissmallerthanthepricechangeforanequalincreaseinrates.
Conversely,aputablebondwillhavelargerone-sideddown-durationthanone-sidedup-duration.
PortfolioDuration
PortfolioDuration
TheMacaulayandmodifieddurationsfortheportfolioarecalculatedastheweightedaverageofthestatisticsfortheindividualbonds.Thesharesofoverallportfoliomarketvaluearetheweights.
Portfolioduration=w1D1+w2D2+……+wnDn
Themainadvantagetothesecondapproachisthatitiseasilyusedasameasureofinterestraterisk.
Limitations:themeasureofportfoliodurationimplicitlyassumesa
parallelshiftintheyieldcurve.
Aparallelyieldcurveshiftimpliesthatallrateschangebythesameamountinthesamedirection.
Inreality,interestratechangesfrequentlyresultinasteeperorflatteryieldcurve.(non-parallelshifts→keyrateduration)
YieldCurveRisk
Yieldcurverisk:risktoportfoliovaluearisingfromunanticipatedchangesintheyieldcurve,canbemanagedonthebasisofseveralmeasuresofsensitivitytoyieldcurvemovements
Managingyieldcurverisk
Effectiveduration:measuresthesensitivityofabond'spricetoasmallparallelshiftinabenchmarkyieldcurve
Addressriskassociatedwithparallelyieldcurvechanges
keyrateduration:measuresabond'ssensitivitytoasmallchangeinabenchmarkyieldcurveataspecificmaturitysegment
allowsidentificationandmanagementof"shapingrisk"—thatis,sensitivitytochangesintheshapeofthebenchmarkyieldcurve
Keyrateduration
Durationisanadequatemeasureofbondpriceriskonlyforsmallparalleledshiftsintheyieldcurve.
Akeyratedurationisdefinedastheapproximatepercentagechangeinthevalueofabondorbondportfolioinresponsetoa100basispointchangeinthecorrespondingkeyrate,holdingallotherratesconstant.(fornon-parallelshifts)
Example:
Bond
(zerocoupon)
Weight
D1
D2
D3
D4
KeyRateDuration
2year
10
2
0.2
10year
20
10
2.0
20year
40
20
8.0
25year
30
25
7.5
Portfolio
100
17.7
Example:non-parallelshift
Bond(zerocoupon)
Weight
D1
D2
D3
D4
KeyRateDuration
Shifts
Changesinvalue
2year
10
2
0.2
+1%
-0.2%
10year
20
10
2.0
+1.5%
-3.0%
20year
40
20
8.0
+0.8%
-6.4%
25year
30
25
7.5
-1%
7.5%
Portfolio
100
17.7
-2.1%
Convexityisameasureofthecurvatureoftheprice-yieldcurve.
Themorecurvedtheprice-yieldrelationis,theworseourduration-basedestimatesofbondpricechangesinresponsetochangesinyieldare DP
=[-
P
MD碊( y)]+
轾犏臌0.5创Conv (Dy)2
Theconvexityadjustmentisalwayspositivewhenconvexityispositive
ForanOption-freebondtheprice-yieldcurveisconvextowardtheorigin
Pricefallsarateasyield
Callable
Putable
price/yieldrelationshipwillbemoreconvexwhenyieldincrease
Price(%ofPar)
Calloptionvalue
Price
102
Callablebond
Option-freebond
Option-freebond
putablebond
Valueoftheputoption
YieldNegativeconvexity y’PositiveConvexity
Yield
y’
Comparisonamongeffectiveconvexitiesofcallable,putableandstraightbonds
Straightbondshavepositiveeffectiveconvexity
Theincreaseinthevalueofanoption-freebondishigherwhenratesfallthanthedecreaseinvaluewhenratesincreasebyanequalamount
Callablebondsareunlikelytobecalledandwillexhibitpositiveconvexitywhenratesarehigh
Theeffectiveconvexityturnsnegativewhentheunderlyingcalloptionisnearthemoney
Theupsidepotentialofthebond’spriceislimitedduetothecall(whilethedownsideisnotprotected)
Putablebondsexhibitpositiveconvexitythroughout
CreditRisk
FixedIncome
Creditriskistheriskassociatedwithlossesstemmingfromthefailureofaborrowertomaketimelyandfullypaymentsofinterestorprincipal.Creditriskdependson:
Probabilityofdefault,ordefaultprobability,istheprobabilitythataborrowerdefaults–thatis,failstopayinterestorrepayprincipalwhendue.
lossgivendefault,intheeventofdefault,istheportionofabond’s
value(includingunpaidinterest)aninvestorloses.
Recoveryrateisthepercentageoftheprincipalamountrecoveredintheeventofdefault.Lossgivendefault(%)=100-recoveryrate
Expectedloss=Defaultprobability*Lossseveritygivendefault
Dependsonthestateoftheeconomy:duringboomtimes,theprobabilityofdefaultandlossgivendefaultwillbelower
CapitalStructure:thecompositionanddistributionacrossoperatingunitsofacompany’sdebtandequity,includingbankdebt,bondsofallseniorityrankings,preferredstock,andcommonequity.
FirstLienLoan
SeniorityRanking
SeniorUnsecured
SeniorSecured
Subordinated
SeniorSubordinated
JuniorSubordinated
ThefourCsofcreditanalysis
Capacityreferstotheabilityoftheborrowertomakeitsdebtpaymentsontime.
Collateralreferstothequalityandvalueoftheassetssupportingthe
issuer’sindebtedness.
Covenantsarethetermsandconditionsoflendingagreementsthattheissuermustcomplywith.
Characterreferstothequalityofmanagement
Creditscoringmodel
Ordinalrankingsjustcategorizeborrowerfromhighesttolowestrisk,butdonotindicatethedegreetowhichthecreditriskdiffers.
E.g.Acreditscoreof450isnotequaltohalfthecreditriskofanindividualwithacreditscoreof900.
Creditscoringisusedforsmallbusinessesandindividuals.Characteristicsofcreditscoring:
Creditscoresareordinalrankings.
Notpercentilerankings,andthedistributionofcreditscoreschangeovertime.
Donotexplicitlytakeintoaccountcurrenteconomicconditions.i.e.donotimprovewiththeeconomy.
Pressurefromusersofcreditscores(lenders)toprioritizestabilityinscoresovertime
Donottakeintoaccountdifferingprobabili
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职(工程造价)工程结算编制阶段测试题及答案
- 2025年大学二年级(护理学)内科护理技术试题及答案
- 2025年大二(光电信息科学与工程)光电检测技术综合测试卷
- 2025年中职(旅游管理)导游基础知识阶段测试题及答案
- 2025年大学大四(包装工程)包装设计与策划综合测试试题及答案
- 2025年中职供热通风与空调工程技术(空调工程实务)试题及答案
- 2025年中职电工(电气技术应用)试题及答案
- 2025年中职国际货运代理(货运代理进阶)试题及答案
- 2025年大学互联网营销技巧(营销方法)试题及答案
- 中职第二学年(物流管理)库存管理实务2026年综合测试题及答案
- 2025版小学语文新课程标准
- 2022年华润电力春季校园招聘上岸笔试历年难、易错点考题附带参考答案与详解
- (完整版)数字信号处理教案(东南大学)
- 台球厅转让合同书
- 回族做礼拜的念词集合6篇
- 社区八一建军节活动方案
- 名校版高中数学基础知识全归纳(填空版+表格版+思维导图)
- 承包商表现评价表
- WHO+全球口腔卫生状况报告-Global oral health status report -Towards universal health coverage for oral health by 2030
- GB/T 5462-2003工业盐
- FZ/T 14051-2021棉与锦纶长丝氨纶包覆纱交织弹力印染布
评论
0/150
提交评论