版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市教育院附属中学2024届数学九年级第一学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.1π﹣ B.1π﹣9 C.12π﹣ D.2.数据4,3,5,3,6,3,4的众数和中位数是()A.3,4 B.3,5 C.4,3 D.4,53.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A. B. C. D.4.如图,菱形ABCD中,EF⊥AC,垂足为点H,分别交AD、AB及CB的延长线交于点E、M、F,且AE:FB=1:2,则AH:AC的值为()A. B. C. D.5.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:46.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则()A. B. C. D.7.已知点在同一个函数的图象上,这个函数可能是()A. B. C. D.8.一组数据:2,3,6,4,3,5,这组数据的中位数、众数分别是()A.3,3 B.3,4 C.3.5,3 D.5,39.已知关于x的分式方程无解,关于y的不等式组的整数解之和恰好为10,则符合条件的所有m的和为()A. B. C. D.10.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54° B.27° C.36° D.46°11.用配方法解方程,下列变形正确的是()A. B. C. D.12.下列图形中,既是轴对称图形又是中心对称图形的是()A.平行四边形 B.菱形 C.等边三角形 D.等腰直角三角形二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D,求AD的长14.若,则的值是______.15.已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(﹣3,0),(2,0),则方程ax2+bx+c=0(a≠0)的解是_____.16.如图,∠MON=90°,直角三角形ABC斜边的端点A,B别在射线OM,ON上滑动,BC=1,∠BAC=30°,连接OC.当AB平分OC时,OC的长为______.17.如图,已知矩形ABCD的两条边AB=1,AD=,以B为旋转中心,将对角线BD顺时针旋转60°得到线段BE,再以C为圆心将线段CD顺时针旋转90°得到线段CF,连接EF,则图中阴影部分面积为_____.18.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.三、解答题(共78分)19.(8分)抛物线直线一个交点另一个交点在轴上,点是线段上异于的一个动点,过点作轴的垂线,交抛物线于点.(1)求抛物线的解析式;(2)是否存在这样的点,使线段长度最大?若存在,求出最大值及此时点的坐标,若不存在,说明理由;(3)求当为直角三角形时点P的坐标.20.(8分)如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,,求⊙O半径的长.21.(8分)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)作出△ABC关于y轴对称的,并写出的坐标;(2)作出△ABC绕点O逆时针旋转90°后得到的,并求出所经过的路径长.22.(10分)下面是一位同学做的一道作图题:已知线段、、(如图所示),求作线段,使.他的作法如下:1.以下为端点画射线,.2.在上依次截取,.3.在上截取.4.联结,过点作,交于点.所以:线段______就是所求的线段.(1)试将结论补完整:线段______就是所求的线段.(2)这位同学作图的依据是______;(3)如果,,,试用向量表示向量.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数()的图象交于,两点,已知点坐标为.(1)求一次函数和反比例函数的解析式;(2)连接,,求的面积.24.(10分)如图,四边形中,平分.(1)求证:;(2)求证:点是的中点;(3)若,求的长.25.(12分)如图,在四边形中,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.(1)求证:;(2)若,试求四边形的对角线的长.26.如图,要建一个底面积为130平方米的鸡场,鸡场一边靠墙(墙长16米),并在与墙平行的一边开道1米宽的门,现有能围成32米长的木板.求鸡场的长和宽各是多少米?
参考答案一、选择题(每题4分,共48分)1、A【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=1,CD=3,从而得到∠CDO=30°,∠COD=10°,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-S△COD,进行计算即可.【题目详解】解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD=2OC=1,∴CD=,∴∠CDO=30°,∠COD=10°,∴由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD=﹣=1π﹣,∴阴影部分的面积为1π﹣.故选A.【题目点拨】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.记住扇形面积的计算公式.也考查了折叠性质.2、A【分析】根据众数和中位数的定义解答即可.【题目详解】解:在这组数据中出现次数最多的是3,即众数是3;
把这组数据按照从小到大的顺序排列3,3,3,4,4,5,6,
∴中位数为4;
故选:A.【题目点拨】本题考查一组数据的中位数和众数,一组数据中出现次数最多的数据叫做众数;在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.3、B【解题分析】试题分析:∵函数y=x2的图象的顶点坐标为,将函数y=x2的图象向右平移2个单位,再向上平移3个单位,∴其顶点也向右平移2个单位,再向上平移3个单位.根据根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.∴平移后,新图象的顶点坐标是.∴所得抛物线的表达式为.故选B.考点:二次函数图象与平移变换.4、B【分析】连接BD,如图,利用菱形的性质得AC⊥BD,AD=BC,AD∥BC,再证明EF∥BD,接着判断四边形BDEF为平行四边形得到DE=BF,设AE=x,FB=DE=2x,BC=3x,所以AE:CF=1:5,然后证明△AEH∽△CFH得到AH:HC=AE:CF=1:5,最后利用比例的性质得到AH:AC的值.【题目详解】解:连接BD,如图,∵四边形ABCD为菱形,∴AC⊥BD,AD=BC,AD∥BC,∵EF⊥AC,∴EF∥BD,而DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF,由AE:FB=1:2,设AE=x,FB=DE=2x,BC=3x,∴AE:CF=x:5x=1:5,∵AE∥CF,∴△AEH∽△CFH,∴AH:HC=AE:CF=1:5,∴AH:AC=1:1.故选:B.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知菱形的性质及相似三角形的性质.5、C【分析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【题目详解】∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:1.故选C.【题目点拨】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.6、C【分析】根据平行线的性质和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根据相似三角形的性质即可得到答案.【题目详解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故选C.【题目点拨】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.7、D【解题分析】由点的坐标特点,可知函数图象关于轴对称,于是排除选项;再根据的特点和二次函数的性质,可知抛物线的开口向下,即,故选项正确.【题目详解】点与点关于轴对称;由于的图象关于原点对称,因此选项错误;由可知,在对称轴的右侧,随的增大而减小,对于二次函数只有时,在对称轴的右侧,随的增大而减小,选项正确故选.【题目点拨】考查正比例函数、反比例函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.8、C【分析】把这组数据按照从小到大的顺序排列,第1、4个数的平均数是中位数,在这组数据中出现次数最多的是1,得到这组数据的众数.【题目详解】要求一组数据的中位数,把这组数据按照从小到大的顺序排列2,1,1,4,5,6,第1、4个两个数的平均数是(1+4)÷2=1.5,所以中位数是1.5,在这组数据中出现次数最多的是1,即众数是1.故选:C.【题目点拨】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.9、C【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程无解确定出m的值,不等式组整理后表示出解集,由整数解之和恰好为10确定出m的范围,进而求出符合条件的所有m的和即可.【题目详解】解:,分式方程去分母得:mx+2x-12=3x-9,移项合并得:(m-1)x=3,当m-1=0,即m=1时,方程无解;当m-1≠0,即m≠1时,解得:x=,由分式方程无解,得到:或,解得:m=2或m=,不等式组整理得:,即0≤x<,由整数解之和恰好为10,得到整数解为0,1,2,3,4,可得4<≤5,即,则符合题意m的值为1和,之和为.故选:C.【题目点拨】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.10、C【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【题目详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=∠AOB=36°.故答案为C.【题目点拨】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.11、D【解题分析】等式两边同时加上一次项系数一半的平方,利用完全平方公式进行整理即可.【题目详解】解:原方程等式两边同时加上一次项系数一半的平方得,,整理后得,,故选择D.【题目点拨】本题考查了配方法的概念.12、B【解题分析】试题解析:A.不是轴对称图形,是中心对称图形,故此选项错误,不合题意;B.是轴对称图形,也是中心对称图形,故此选项正确,符合题意;C.是轴对称图形,不是中心对称图形,故此选项错误,不合题意;D.无法确定是轴对称图形,也不是中心对称图形,故此选项错误,不合题意.故选B.二、填空题(每题4分,共24分)13、AD=1【分析】通过证明△ADE∽△ACB,可得,即可求解.【题目详解】解:∵∠C=∠ADE=90°,∠A=∠A,∴△ADE∽△ACB,∴∴,∴AD=1.【题目点拨】本题考查了相似三角形的判定与性质定理,熟练掌握定理是解题的关键.14、【分析】根据合比性质:,可得答案.【题目详解】由合比性质,得,故答案为:.【题目点拨】本题考查了比例的性质,利用合比性质是解题关键.15、.x1=-3,x2=2【题目详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(−3,0),(2,0),∴当x=−3或x=2时,y=0,即方程的解为故答案为:16、.【分析】取AB中点F,连接FC、FO,根据斜边上的中线等于斜边的一半及等腰三角形三线合一的性质得到AB垂直平分OC,利用特殊角的三角函数即可求得答案.【题目详解】如图,设AB交OC于E,取AB中点F,连接FC、FO,∵∠MON=∠ACB=90°∴FC=FO(斜边上的中线等于斜边的一半),又AB平分OC,∴CE=EO,ABOC(三线合一)在中,BC=1,∠ABC=90,∴,∴∴故答案为:【题目点拨】本题考查了直角三角形的性质,斜边上的中线等于斜边的一半,等腰三角形的性质,综合性较强,但难度不大,构造合适的辅助线是解题的关键.17、【分析】矩形ABCD的两条边AB=1,AD=,得到∠DBC=30°,由旋转的性质得到BD=BE,∠BDE=60°,求得∠CBE=∠DBC=30°,连接CE,根据全等三角形的性质得到∠BCE=∠BCD=90°,推出D,C,E三点共线,得到CE=CD=1,根据三角形和扇形的面积公式即可得到结论.【题目详解】∵矩形ABCD的两条边AB=1,AD=,∴,∴∠DBC=30°,∵将对角线BD顺时针旋转60°得到线段BE,∴BD=BE,∠BDE=60°,∴∠CBE=∠DBC=30°,连接CE,∴△DBC≌△EBC(SAS),∴∠BCE=∠BCD=90°,∴D,C,E三点共线,∴CE=CD=1,∴图中阴影部分面积=S△BEF+S△BCD+S扇形DCF﹣S扇形DBE=+﹣=,故答案为:.【题目点拨】本题考查了旋转的性质,解直角三角形,矩形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.18、6【解题分析】由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△AOP与△CDO中,,∴△AOP≌△CDO(AAS),∴AP=CO=AC﹣AO=9﹣3=6.故答案为6.三、解答题(共78分)19、(1);(2)当时,长度的最大值为,此时点的坐标为;(3)为直角三角形时点的坐标为或.【分析】(1)根据已知条件先求得,,将、坐标代入,再求得、,最后将其代入即可得解;(2)假设存在符合条件的点,并设点的横坐标,然后根据已知条件用含的式子表示出、的坐标,再利用坐标平面内距离公式求得、间的距离,将其进行配方即可进行判断并求解;(3)分、两种情况进行讨论,求得相应的符合要求的点坐标即可.【题目详解】解:(1)∵抛物线直线相交于、∴当时,;当时,,则∴,∴把代入得∴∴(2)假设存在符合条件的点,并设点的横坐标则、∴∵∴有最大值当时,长度的最大值为,此时点的坐标为(3)①当时∵直线垂直于直线∴可设直线的解析式为∵直线过点∴∴∴直线的解析式为∴∴或(不合题意,舍去)∴此时点的坐标为∴当时,∴此时点的坐标为;②当时∴点的纵坐标与点的纵坐标相等即∴∴解得(舍去)∴当时,∴此时点的坐标为.∴综上所述,符合条件的点存在,为直角三角形时点的坐标为或.故答案是:(1);(2)当时,长度的最大值为,此时点的坐标为;(3)为直角三角形时点的坐标为或.【题目点拨】本题考查了二次函数与一次函数的综合应用,涉及到了动点问题、最值问题、用待定系数法求解析式、方程组问题等,充分考查学生的综合运用能力和数形结合的思想方法.20、(1)证明见解析;(2)AO=.【分析】(1)连接OD,利用点D是半圆的中点得出∠AOD与∠BOD是直角,之后通过等量代换进一步得出∠FCE+∠OCD=∠OED+∠ODC=90°从而证明结论即可;(2)通过得出=,再证明△ACF∽△CBF从而得出AF=10,之后进一步求解即可.【题目详解】证明:连接OD,∵点D是半圆的中点,∴∠AOD=∠BOD=90°.∴∠ODC+∠OED=90°.∵OD=OC,∴∠ODC=∠OCD.又∵CF=EF,∴∠FCE=∠FEC.∵∠FEC=∠OED,∴∠FCE=∠OED.∴∠FCE+∠OCD=∠OED+∠ODC=90°.即FC⊥OC.∴FC是⊙O的切线.(2)∵tanA=,∴在Rt△ABC中,=.∵∠ACB=∠OCF=90°,∴∠ACO=∠BCF=∠A.∴△ACF∽△CBF,∴===.∴AF=10.∴CF2=BF·AF.∴BF=.∴AO==.【题目点拨】本题主要考查了圆的切线证明与综合运用,熟练掌握相关概念是解题关键.21、(1)作图详见解析;(﹣5,﹣4);(2)作图详见解析;.【解题分析】试题分析:(1)分别作出各点关于y轴的对称点,再顺次连接即可,根据点在坐标系中的位置写出点坐标即可;(2)分别作出各点绕点O逆时针旋转90°后得到的对称点,再顺次连接即可,根据弧长公式计算可得所经过的路径长.试题解析:(1)如图,即为所求作三角形(﹣5,﹣4);(2)如图,即为所求作三角形,∵=,∴所经过的路径的长为=.考点:作图——旋转变换;作图——轴对称变换.22、(1)CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例)等;(3)【分析】(1)根据作图依据平行线分线段成比例定理求解可得;
(2)根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;
(3)先证△OAC∽△OBD得,即,从而知,又,与反向可得出结果.【题目详解】解:(1)根据作图知,线段CD就是所求的线段x,
故答案为:CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例).(3),∴△OAC∽△OBD,.,,.得.,,与反向,.【题目点拨】本题主要考查作图-复杂作图,解题的关键是熟练掌握平行线分线段成比例定理及向量的计算.23、(1)一次函数的解析式为,反比例函数的解析式为;(2)6【分析】(1)由点的坐标利用一次函数、反比例函数图象上点的坐标特征即可得出反比例函数解析式;(2)联立一次函数、反比例函数得方程,解方程组即可求出AB点坐标,求出直线与轴的交点坐标后,即可求出和,继而求出的面积.【题目详解】解:(1)将代入解析式与得,,,一次函数的解析式为,反比例函数的解析式为;(2)解方程组得或,,设直线与轴,轴交于,点,易得,即,.【题目点拨】本题考查了反比例函数与一次函数的交点问题、待定系数法求一次函数和反比例函数解析式以及三角形的面积,解题的关键是:根据点的坐标利用待定系数法求出函数解析式;利用分割图形求面积法求出的面积.24、(1)见解析;(2)见解析;(3)【分析】(1)通过证明△ABD∽△BCD,可得,可得结论;(2)通过和相似得出∠MBD=∠MDB,在利用同角的余角相等得出∠A=∠ABM,由等腰三角形的性质可得结论;(3)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD•CD和勾股定理可求MC的长,通过证明△MNB∽△CND,可得.【题目详解】解:(1)证明:∵DB平分∠ADC,
∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,
∴△ABD∽△BCD,∴,∴BD2=AD•CD(2)证明:∵,∴∠MBD=∠BDC,∠MBC=90°,∵∠MDB=∠CDB,∴∠MBD=∠MDB,∴MB=MD,∵∠MBD+∠ABM=90°,∴∠ABM=∠CBD,∵∠CBD=∠A,∴∠A=∠ABM,∴MA=MB,∴MA=MD,即M为AD中点;(3)∵BM∥CD
∴∠MBD=∠BDC
∴∠ADB=∠MBD,且∠ABD=90°
∴BM=MD,∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年智能电表在电气节能中的经济分析
- 急诊护理管理与应急处理技巧
- 医疗急救现场礼仪与应急处置
- 医疗行业医院文化建设要点
- 2026年湖南科技职业学院高职单招职业适应性测试备考试题有答案解析
- 2026年河南应用技术职业学院单招综合素质考试模拟试题带答案解析
- 账户管理办法培训课件
- 护理创新技术与产品研发进展
- 护理专业认证与医院护理质量提升
- 2026年河北轨道运输职业技术学院单招综合素质笔试备考题库带答案解析
- 《道路旅客运输企业突发事件应急预案》
- 阿拉伯语课程讲解
- 喷油部管理制度
- 《齐鲁文化》期末笔记
- 非煤地下矿山机电知识
- 化工原理课程设计说明书-2778kg-h苯-甲苯筛板式精馏塔设计
- 97S501-1-井盖及踏步图集
- GB 30254-2024高压三相笼型异步电动机能效限定值及能效等级
- 盐酸、硫酸产品包装说明和使用说明书
- 汽车线束DFMEA设计失效模式和影响分析
- plc电梯设计的参考文献
评论
0/150
提交评论