第二章 催化剂的制备 - 沉淀法_第1页
第二章 催化剂的制备 - 沉淀法_第2页
第二章 催化剂的制备 - 沉淀法_第3页
第二章 催化剂的制备 - 沉淀法_第4页
第二章 催化剂的制备 - 沉淀法_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

固体催化剂材料与催化剂设计CatalystEngineering沈阳化工大学化学工程学院第二章工业催化剂的制备方法Bulkcatalystsandsupports(一体化催化剂)沉淀法热熔融法(fusedcatalysts)混合法Supportedcatalysts(负载型催化剂)浸渍法离子交换法催化剂的成型1、沉淀法在金属盐溶液中加入沉淀剂,生成难溶金属盐或金属水合氧化物,从溶液中沉淀出来,再经老化、过滤、洗涤、干燥、焙烧、成型、活化等工序制得催化剂或催化剂载体——广泛用于制备高含量的非贵金属、(非)金属氧化物催化剂或催化剂载体沉淀法的生产流程形成沉淀的条件溶液过饱和溶质的过饱和浓度溶质的饱和浓度溶液的过饱和度只有过饱和溶液才能形成沉淀?溶液中析出晶核是一个由无到有生成新相的过程,溶质分子必须有足够的能量克服液固相界面的阻力,碰撞凝聚成晶核同时,为了使从溶液中生成的晶核长大成晶体,也必须有一定的浓度差作为扩散推动力临界过饱和度:开始析出沉淀时的过饱和度沉淀过程晶核的生成—溶液达到一定的过饱和度,固相生成速率大于固相

溶解速率,(诱导期后)瞬间生成大量晶核单位时间内单位体积溶液中生成的晶核数晶核生成速率:S

N

晶核的长大—溶质分子在溶液中扩散到晶核表面,并按一定的晶格

定向排列,使晶核长大成为晶体—类似于“带有化学反应的传质过程”扩散:溶质分子扩散通过液固界面的滞流层表面反应:分子或离子定向排列进入晶格单位时间内沉积的固体量晶核长大速率:S

dm/dt

过饱和度(S=C/C*)与时间(t)的关系C/C*t晶核生成数目(n)与时间(t)的关系晶核长大的总体积(V)与时间(t)的关系tVnt诱导期晶核生成速率>>晶核长大速率:离子很快聚集成大量晶核,溶液的过饱和度迅速下降,溶液中没有更多的离子聚集到晶核上,于是晶核就迅速聚集成细小的无定形颗粒,得到非晶形沉淀,甚至是胶体晶核长大速率>>晶核生成速率:溶液中最初形成的晶核不多,有较多的离子以晶核为中心,按一定的晶格定向排列而成为颗粒较大的晶形沉淀沉淀形成的晶型金属盐类和沉淀剂的选择金属盐类的选择沉淀剂的选择选择原则:不能引入有害杂质

—沉淀剂要易分解挥发沉淀剂溶解度要大

—提高阴离子的浓度,沉淀完全;被沉淀物吸附量少,易洗涤除去沉淀物溶解度要小

—沉淀完全,适用于Cu、Ni、Ag、Mo等较贵金属沉淀要易过滤和洗涤

—尽量选用能形成晶形沉淀的沉淀剂(盐类)沉淀剂必须无毒硝酸盐—非贵金属盐的首选硫酸盐、有机酸盐常用沉淀剂:碱类:氨水、NaOH、KOH碳酸盐:(NH4)2CO3、Na2CO3、CO2有机酸:CH3COOH、H2C2O4、CH3COONH4、(NH4)2C2O4影响沉淀的因素溶液的浓度晶核生成速率:晶核长大速率:生成速率或长大速率溶液过饱和度晶体大小晶核生成速率晶核长大速率晶体颗粒大小结论:晶形沉淀应在稀溶液中进行(稀溶液中更有利于晶核长大)过饱和度不太大时(S=1.5-2.0)可得到完整结晶过饱和度较大时,结晶速率很快,易产生错位和晶格缺陷,但也易包藏杂质、晶粒较小沉淀剂应在搅拌下均匀缓慢加入,以免局部过浓非晶形沉淀应在较浓溶液中进行,沉淀剂应在搅拌下迅速加入温度结论:晶核生成速率、长大速率存在极大值(晶核生成速率最大时的温度比晶核长大速率最大时的温度低得多)低温有利于晶核生成,不利于晶核长大,一般得到细小颗粒晶形沉淀应在较热溶液中进行,并且热溶液中沉淀吸附杂质少、沉淀时间短(一般70-80oC)生成速率或长大速率温度晶体大小晶核生成速率晶核长大速率晶体颗粒大小pH值同一物质在不同pH值下沉淀可能得到不同的晶形多组分金属盐的共沉淀,pH值的变化会引起先后沉淀Al3++OH-Al2O3·mH2O无定形胶体α-Al2O3·H2O针状胶体β-Al2O3·nH2O球状晶体pH=9pH>10pH<7为了保证沉淀颗粒的均一性、均匀性,pH值必须保持相对稳定加料方式顺加法:沉淀剂加入到金属盐溶液中逆加法:金属盐溶液加入到沉淀剂中并加法:金属盐溶液和沉淀剂按比例同时并流加到沉淀槽中pH

多组分先后沉淀

沉淀不均匀pH

多组分同时沉淀

沉淀均匀pH稳定

多组分同时沉淀

沉淀均匀搅拌强度沉淀时搅拌是必需的搅拌强度大,液体分布均匀,但沉淀粒子可能被搅拌浆打碎;搅拌强度小,液体不能混合均匀晶形沉淀:沉淀剂应在搅拌下均匀缓慢加入,以免局部过浓非晶形沉淀:沉淀剂应在搅拌下迅速加入沉淀影响因素复杂。在实际操作中,应根据催化剂性能对结构的不同要求,选择合适的沉淀条件,控制沉淀的类型和晶粒大小,以便得到预定的结构和理想的催化性能——沉淀法制备催化剂的研究重点沉淀法的分类单组分沉淀法溶液中只有一种金属盐与沉淀剂作用,形成单一组分沉淀物(用于制备单组分催化剂或载体)例:氧化铝的制备

酸法:Al3++OH-

Al2O3·nH2O

碱法:AlO2-+H3O+

Al2O3·nH2O

注意:对于两性物质,pH过高,沉淀会重新溶解氨水作沉淀剂时,氨浓度过高形成配离子,沉淀溶解(NH4)2CO3、Na2CO3作沉淀剂时,可能生成碳酸盐、氢氧化物、碱式碳酸盐沉淀(多组分)共沉淀法将含有两种或两种以上金属盐的混合溶液与一种沉淀剂作用,形成多组分沉淀物(用于制备多组分催化剂)优点:分散性和均匀性好(优于混合法)注意:各金属盐、沉淀剂浓度、介质pH值、加料方式等条件件必须满足各个组分同时沉淀的要求Na2CO3作沉淀剂时,多组分可能生成复盐沉淀

如,Na2CO3共沉淀硝酸铜与硝酸锌,形成(ZnCu)5(OH)6(CO3)2金属AlMgCaZnCu是否否是Fe是是否否Ni是是否否Zn是否否×Mg是×是否Ca否是×否共沉淀时是否可形成复合碳酸盐的金属复盐的形成进一步增加了沉淀物组成的均匀性,这对在焙烧过程形成化合物或固熔体有重要影响均匀沉淀法沉淀剂不直接加入待沉淀溶液中,而是首先把待沉淀溶液与沉淀剂母体混合,形成一个十分均匀的体系,然后调节温度,使沉淀剂母体逐步转化为沉淀剂,从而使沉淀缓慢进行,得到均匀纯净的沉淀物例:制取氢氧化铝沉淀优点:克服一般沉淀法中沉淀剂与待沉淀溶液混合不均匀、

沉淀颗粒粗细不均、沉淀含杂质较多等缺点(NH2)2CO+3H2O2NH4++2OH-

+CO2

(母体)(沉淀剂)90~100℃沉淀剂母体沉淀剂母体OH-尿素S2-硫代乙酰胺PO43-磷酸三甲酯S2-硫脲C2O42-尿素与草酸二甲酯或草酸CO32-三氯乙酸盐SO42-硫酸二甲酯CrO42-尿素与HCrO4-SO42-黄酰胺常用的均匀沉淀剂母体超均匀共沉淀法将沉淀操作分两步进行:首先制成盐溶液的悬浮层,然后将悬浮层立刻瞬间混合成均匀的过饱和溶液。经一段时间(诱导期)后,形成超均匀的沉淀物关键:瞬间混合—快速搅拌

(防止形成结构或组成不均匀的沉淀)Na2SiO3溶液

=1.3NaNO3溶液

=1.2Ni(NO3)2+HNO3溶液

=1.1Ni/SiO2制备(苯选择加氢催化剂)形成均匀的水溶胶或胶冻,再经分离、洗涤、干燥、焙烧、还原即得催化剂导晶沉淀法配位(共)沉淀法借助晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法—预加少量晶种引导结晶快速完整形成例:制备高硅钠型分子筛(丝光沸石、X型、Y型分子筛)先在金属盐溶液中加入配位剂,形成金属配位物溶液,然后与沉淀剂一起并流到沉淀槽中进行沉淀。由于配位剂的加入,控制金属离子的浓度,使得沉淀物的粒径分布均匀导向剂沉淀的后处理过程老化过滤洗涤干燥焙烧成型活化沉淀的后处理过程老化(陈化、熟化)沉淀完成后不立即过滤,而是和母液一起放置一段时间。在此期间内发生的一切不可逆变化称为沉淀物的老化因素:老化时间、温度、pH值作用:颗粒长大,形成颗粒大小均匀的纯净粗晶体晶形完善及晶形转变初生沉淀的不稳定结构逐渐变成稳定结构;非晶形沉淀可能变为晶形沉淀(分子筛、水合氧化铝);多晶态沉淀物在不同老化条件下可得到不同晶形物质(水合氧化铝)小结:晶形沉淀形成条件:沉淀应在稀溶液中进行沉淀剂应在搅拌下均匀缓慢加入较热溶液中进行老化非晶形沉淀形成条件:沉淀应在较浓溶液中进行沉淀剂应在搅拌下迅速加入沉淀后,加入较大量热水稀释(减少杂质),立即过滤过滤与洗涤洗涤目的:去除杂质杂质类型:表面吸附——洗涤

形成混晶——老化

机械包藏——老化洗涤操作:蒸馏水、去离子水、洗涤液(草酸铵溶液洗涤草酸盐沉淀)溶解度大的晶形沉淀用冷液洗涤;溶解度小的非晶形沉淀用温热的易挥发稀电解质

溶液洗涤(硝酸铵溶液洗涤水合氧化铝沉淀,防止形成胶体)干燥与焙烧干燥目的:去除水分干燥条件:干燥温度(60-200oC)、干燥时间干燥影响:对催化剂物理结构(孔结构)有影响焙烧目的:通过物料的热分解,除去化学结合水和挥发性杂质(CO2、NO2、NH3),使其转化成所需的化学成分和化学形态借助固态反应、互溶和再结晶获得一定的晶形、微晶粒度、孔径和比表面积等使微晶适当烧结,以提供催化剂的机械强度(成型后焙烧情况)焙烧条件:焙烧温度(不低于分解温度和催化剂使用温度)、焙烧时间成型(后面详细介绍)活化(还原、硫化)还原目的:将金属氧化物还原成活性金属(金属催化剂)还原条件:还原温度、时间、还原气空速

还原气组成(H2、CO、CH4、C2H4、N2-H2、H2-CO、含水蒸气)还原操作:器内还原(insitu)

器外预还原(exsitu)

——如,合成氨熔铁催化剂2、溶胶-凝胶法溶胶-凝胶(Sol-Gel)法是一种新兴的催化剂制备方法!——用于制备金属氧化物催化剂、杂多酸催化剂、非晶态催化剂等(加水)金属醇盐水解(加胶溶剂)胶溶陈化胶凝干燥焙烧金属醇盐的母醇溶液金属氧化物或水合金属氧化物溶胶凝胶催化剂金属醇盐胶溶法制备催化剂的Sol-Gel过程Fourmainstepsinthesol–gelpreparation胶体化学简介溶胶——分散在分散介质中的分散相颗粒粒径为1-100nm的分散系统粗分散系统胶体系统分子分散系统>100nm100-1nm<1nm分散法凝聚法大变小小变大溶胶的制备:分散法:利用机械设备、气流粉碎、电弧和胶溶等方法

将较大颗粒分散成胶体状态凝聚法:利用物理或化学方法使溶液中的溶质(分子或

离子)聚集成胶体粒子胶溶:在新生成的沉淀中,加入适合的电解质(HCl、HNO3等)

或置于某一温度下,通过胶溶作用使沉淀重新分散成溶胶如,复分解法制备盐类溶胶:AgNO3+KIAgI(溶胶)+KNO3水解法制备金属氧化物溶胶:FeCl3+3H2O(煮沸)Fe(OH)3(溶胶)+3HCl胶团的结构:——扩散双电层结构[(H2SiO3)m

nSiO32-2(n-x)H+]2x-2xH+胶核吸附层扩散层胶体粒子(胶粒)胶团[(AgI)m

nAg+(n-x)NO3-]x+

xNO3-溶胶稳定的因素:胶粒带电;溶剂化膜;布朗运动—消除或减弱溶胶稳定的因素,将导致溶胶的聚沉或

胶凝(可视为一种特殊的沉淀过程)凝胶——溶胶通过胶凝作用,胶体粒子相互凝结或缩聚而形成三维网状结构,从而失去流动性而生成的一种体积庞大、疏松、含有大量介质液体的无定形沉淀溶胶的胶凝过程影响因素:加入电解质(适量可促进胶凝)溶胶浓度(越高越易胶凝)温度(一般越高越易胶凝)pH值

(越高可促进氢氧化物溶胶胶凝)凝胶特征:分散相(网状结构)与分散介质(水)均为连续相凝胶脱水后可得多孔、大比表面的固体材料Sol-Gel法制备催化剂的过程(加水)金属醇盐水解(加胶溶剂)胶溶陈化胶凝干燥焙烧金属醇盐的母醇溶液金属氧化物或水合金属氧化物溶胶凝胶催化剂金属醇盐胶溶法制备催化剂的Sol-Gel过程——将易于水解的金属化合物(金属盐、金属醇盐或酯)在某种溶剂中与水发生反应,通过水解生成金属氧化物或水合金属氧化物,胶溶得到稳定的溶胶,再经缩聚(或凝结)作用而逐步胶凝化,最后经干燥、焙烧等后处理制得催化剂金属醇盐金属醇盐常用其母醇作溶剂进行溶解(因一般金属醇盐在水中溶解度较小,且醇与水和金属醇盐都互溶)

如,异丙醇铝溶于异丙醇中,仲丁醇铝溶于仲丁醇中醇的加入量应适当(过多延长水解和胶凝时间;过少易出现聚沉而得不到高质量凝胶)同一金属的不同醇盐的水解速率不同如,用Si(OR)4来制备SiO2溶胶:烷基中C原子数越多,水解速率越低(因此常用Si(OC2H5)4)制备多组分氧化物溶胶时,应尽量选择水解速率相近的各醇盐(同步水解)——溶胶均匀性水解金属醇盐在过量水中完全水解,生成金属氧化物或水合金属氧化物沉淀(水解同时伴有缩聚反应,形成不同大小和结构的胶粒)水解反应:缩聚反应:水的加入量(Sol-Gel法的关键参数)

——直接影响溶胶粘度、溶胶向凝胶转化以及凝胶干燥等水解温度(越高水解速率越快)制备多组分氧化物溶胶时,应保持各醇盐水解速率相近(同步水解)——溶胶均匀性胶溶胶凝向水解产物中加入一定量胶溶剂(HCl、HNO3、CH3COOH等),使沉淀重新分散为大小在胶体范围的粒子,从而形成金属氧化物或水合氧化物溶胶加入胶溶剂,粒子表面形成双电层酸的种类及加入量

——直接影响胶粒大小、溶胶粘度和流动性等溶胶性能溶胶质量影响最终催化剂的结构与性能如,胶粒大小决定催化剂最小孔径;胶粒粒径分布及胶粒形状决定催化剂孔径分布及孔的形状等在一定条件下,溶胶胶粒相互凝结或缩聚,逐渐连接形成三维网状结构,把所有液体都包进去,成为冻胶状的水凝胶凝胶的干燥一般干燥法现象:持续收缩和硬化、产生应力和破裂(孔中气液两相共存,由于表面张力作用产生毛细管力。毛细管力将颗粒挤压而团聚。而且由于各处毛细管力不等,使得凝胶孔壁塌陷、网状结构破坏)改进办法:空气中自然干燥(干燥速度要慢)超临界(流体)干燥法单组分物质的相图超临界状态:流体的温度和压力处于临界点(临界温度和临界压力)以上的无气液界面而兼有气体性质和液体性质的物质状态超临界干燥:在高压釜中使被除去液体处于超临界状态,从而消除了表面张力和毛细管力,凝胶中的流体可缓慢脱出,不影响凝胶骨架结构,从而得到小粒径、大孔容、高比表面的超细氧化物(CO2常作超临界干燥介质)处于气液平衡的物质升温升压时(沿TC线变化),热膨胀使液相密度减小,加压使气相密度增大。当温度和压力超过某一临界点时,气液分界面消失,体系性质变得均一而不再分气体与液体如CO2:tc=31.3oC,pc=7.15MPa冻结干燥法微波干燥法真空干燥法一种稳定化的物料干燥过程。将湿物料冻结成固态,然后在较高真空下使冰直接升华变成气态排除一种深入到物料内部由内向外的加热方法优点:加热速度快;无温度梯度,加热均匀;热效率高等在负压条件下对样品加热干燥优点:低温干燥实例:负载型钨磷酸HPWA/SiO2催化剂加水、40oC下水解1h混合、80oC、3h真空干燥,45oC干燥,150oC、12hSi(OC2H5)4SiO2溶胶凝胶干凝胶催化剂HPWA的乙醇溶液溶胶-凝胶法制备催化剂的优点可以制得组成高度均匀、高比表面的催化材料制得的催化剂孔径分布较均匀,且可控可以制得金属组分高度分散的负载型催化剂,催化活性高微乳化技术3、微乳化制备技术微乳液:由两种互不相溶液体在表面活性剂作用下形成的热力学稳定、各向同性、外观透明或半透明、粒径在10-100nm间的分散体系与普通乳状液的比较:——用于制备纳米催化剂(负载型金属纳米催化剂、金

属氧化物纳米催化剂、复合氧化物纳米催化剂等)微乳液(体系)组成:有机溶剂:C6~C8直链烃或环烷烃水(溶液)表面活性剂:阴离子—AOT(琥珀酸二异辛酯磺酸钠)

SDS

(十二烷基硫酸钠)SDBS(十二烷基磺酸钠)阳离子—CTAB(十六烷基三甲基溴化铵)

非离子—Triton-X

(聚氧乙烯醚类)NP(含聚氧乙烯醚)助表面活性剂:中等碳链C5~C8的脂肪醇

(有些体系可不加)微乳液(体系)的制备:Schulman法:把有机溶剂、水和表面活性剂混合均匀,然后再滴加助表面活性剂,直至体系突然变透明Shah法:把有机溶剂、表面活性剂和助表面活性剂混合均匀,然后加入水,体系在瞬间突然变透明微乳液(体系)的类型:O/W(水包油)型:油分散在水中W/O(油包水)型:水分散在油中—纳米催化剂制备常用水核(微乳液滴)被表面活性剂和助表面活性剂所组成的界面膜所包围,尺度小(可控制在几个或几十纳米之间)且彼此分离,故可视为一个“微型反应器”或“纳米反应器”反相微乳液微乳液技术制备纳米(超细)催化剂具体方法将制备催化剂的反应物溶解在微乳液的水核中,在剧烈搅拌下使另一反应物进入水核进行反应(沉淀反应、氧还反应等),产生催化剂的前驱体或催化剂的粒子,待水核内的粒子长到最终尺寸,表面活性剂就会吸附在粒子的表面,使粒子稳定下来并阻止其进一步长大。

反应完全后加入水或有机溶剂(丙酮、四氢呋喃等)除去附在粒子表面的油相和表面活性剂,然后在一定温度下进行干燥和焙烧,制得纳米催化剂微乳内形成纳米(超细)粒子的三种情况水核内发生反应生成的粒子被限定在水核内水核半径决定所得粒子的粒径大小通过控制水核半径,就可制备不同粒度的纳米催化剂影响生成纳米粒子的因素W/O值反应物浓度表面活性剂种类及浓度助表面活性剂种类及浓度温度——水与表面活性剂的摩尔比,用来表示反相微乳的含水量W/O

水核半径

纳米粒子

W/O

水核形状

粒子形状(球状、柱状、线状)W/O

界面膜强度

纳米粒子

在高温条件下将催化剂的各组分熔合成为均匀的混合体、合金固熔体或氧化物固熔体,以制备高活性、高稳定性和高机械强度的催化剂缺点:比表面积小、孔容低、通用差(用于制备合成氨熔铁催化剂、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论