广东省江门蓬江区五校联考2024届数学九年级第一学期期末考试模拟试题含解析_第1页
广东省江门蓬江区五校联考2024届数学九年级第一学期期末考试模拟试题含解析_第2页
广东省江门蓬江区五校联考2024届数学九年级第一学期期末考试模拟试题含解析_第3页
广东省江门蓬江区五校联考2024届数学九年级第一学期期末考试模拟试题含解析_第4页
广东省江门蓬江区五校联考2024届数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省江门蓬江区五校联考2024届数学九年级第一学期期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,将绕点旋转180°得到,设点的坐标为,则点的坐标为()A. B. C. D.2.如图,在平面直角坐标系中,以为圆心作⊙,⊙与轴交于、,与轴交于点,为⊙上不同于、的任意一点,连接、,过点分别作于,于.设点的横坐标为,.当点在⊙上顺时针从点运动到点的过程中,下列图象中能表示与的函数关系的部分图象是()A. B. C. D.3.二次函数图象如图所示,下列结论:①;②;③;④;⑤有两个相等的实数根,其中正确的有()A.1个 B.2个 C.3个 D.4个4.如图,截的三条边所得的弦长相等,若,则的度数为()A. B. C. D.5.若直线与半径为5的相离,则圆心与直线的距离为()A. B. C. D.6.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为().A.; B.; C.; D..7.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=1.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大 B.平均分不变,方差变小C.平均分和方差都不变 D.平均分和方差都改变8.如图,一段公路的转弯处是一段圆弧,则的展直长度为()A.3π B.6π C.9π D.12π9.下列函数属于二次函数的是A. B.C. D.10.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由左图中所示的图案平移后得到的图案是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,AB是圆O的弦,AB=20,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是_____.12.已知实数在数轴上的位置如图所示,则化简__________.13.把抛物线的顶点E先向左平移3个单位,再向上平移4个单位后刚好落在同一平面直角坐标系的双曲线上,那么=__________14.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.15.已知抛物线,那么点P(-3,4)关于该抛物线的对称轴对称的点的坐标是______.16.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为__________m.17.对于任意非零实数a、b,定义运算“”,使下列式子成立:,,,,…,则ab=.18.已知是方程的一个根,则代数式的值为__________.三、解答题(共66分)19.(10分)计算:.20.(6分)如图,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使,请求出点D的坐标;(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.21.(6分)如图,O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E,F,G,H分别是OA,OB,OC,OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.22.(8分)如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.23.(8分)如图,已知线段,于点,且,是射线上一动点,,分别是,的中点,过点,,的圆与的另一交点(点在线段上),连结,.(1)当时,求的度数;(2)求证:;(3)在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.24.(8分)如图1.在平面直角坐标系中,抛物线与轴相交于两点,顶点为,设点是轴的正半轴上一点,将抛物线绕点旋转,得到新的抛物线.求抛物线的函数表达式:若抛物线与抛物线在轴的右侧有两个不同的公共点,求的取值范围.如图2,是第一象限内抛物线上一点,它到两坐标轴的距离相等,点在抛物线上的对应点,设是上的动点,是上的动点,试探究四边形能否成为正方形?若能,求出的值;若不能,请说明理由.25.(10分)如图:在Rt△ABC中,∠C=90°,∠ABC=30°。延长CB至D,使DB=AB。连接AD.(1)求∠ADB的度数.(2)根据图形,不使用计算器和数学用表,请你求出tan75°的值.26.(10分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.

参考答案一、选择题(每小题3分,共30分)1、D【分析】点与点关于点对称,为点与点的中点,根据中点公式可以求得.【题目详解】解:设点坐标为点与点关于点对称,为点与点的中点,即解得故选D【题目点拨】本题考查了坐标与图形变换,得出点、点与点之间的关系是关键.2、A【分析】由题意,连接PC、EF,利用勾股定理求出,然后得到AB的长度,由垂径定理可得,点E是AQ中点,点F是BQ的中点,则EF是△QAB的中位线,即为定值,由,即可得到答案.【题目详解】解:如图,连接PC,EF,则∵点P为(3,0),点C为(0,2),∴,∴半径,∴;∵于,于,∴点E是AQ中点,点F是BQ的中点,∴EF是△QAB的中位线,∴为定值;∵AB为直径,则∠AQB=90°,∴四边形PFQE是矩形,∴,为定值;∴当点在⊙上顺时针从点运动到点的过程中,y的值不变;故选:A.【题目点拨】本题考查了圆的性质,垂径定理,矩形的判定和性质,勾股定理,以及三角形的中位线定理,正确作出辅助线,根据所学性质进行求解,正确找到是解题的关键.3、D【分析】根据图象与x轴有两个交点可判定①;根据对称轴为可判定②;根据开口方向、对称轴和与y轴的交点可判定③;根据当时以及对称轴为可判定④;利用二次函数与一元二次方程的联系可判定⑤.【题目详解】解:①根据图象与x轴有两个交点可得,此结论正确;②对称轴为,即,整理可得,此结论正确;③抛物线开口向下,故,所以,抛物线与y轴的交点在y轴的正半轴,所以,故,此结论错误;④当时,对称轴为,所以当时,即,此结论正确;⑤当时,只对应一个x的值,即有两个相等的实数根,此结论正确;综上所述,正确的有4个,故选:D.【题目点拨】本题考查二次函数图象与系数的关系、二次函数与一元二次方程,掌握二次函数的图象与性质是解题的关键.4、C【分析】先利用截的三条边所得的弦长相等,得出即是的内心,从而∠1=∠2,∠3=∠4,进一步求出的度数.【题目详解】解:过点分别作、、,垂足分别为、、,连接、、、、、、、,如图:∵,∴∴∴点是三条角平分线的交点,即三角形的内心∴,∵∴∴.故选:C【题目点拨】本题考查的是三角形的内心、角平分线的性质、全等三角形的判定和性质以及三角形内角和定理,比较简单.5、B【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【题目详解】解:∵直线与半径为5的相离,∴圆心与直线的距离满足:.故选:B.【题目点拨】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d,圆的半径为r,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.6、A【分析】可设降价的百分率为,第一次降价后的价格为,第一次降价后的价格为,根据题意列方程求解即可.【题目详解】解:设降价的百分率为根据题意可列方程为解方程得,(舍)∴每次降价得百分率为故选A.【题目点拨】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键.7、B【分析】根据平均数、方差的定义计算即可.【题目详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为1,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[1×39+(90-90)2]÷40<1,∴方差变小,∴平均分不变,方差变小故选B.【题目点拨】本题考查了平均数与方差,熟练掌握定义是解题关键.8、B【解题分析】分析:直接利用弧长公式计算得出答案.详解:的展直长度为:=6π(m).故选B.点睛:此题主要考查了弧长计算,正确掌握弧长公式是解题关键.9、A【分析】一般地,我们把形如y=ax²+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数.【题目详解】由二次函数的定义可知A选项正确,B和D选项为一次函数,C选项为反比例函数.【题目点拨】了解二次函数的定义是解题的关键.10、B【解题分析】根据平移的性质:“平移不改变图形的形状和大小”来判断即可.【题目详解】解:根据“平移不改变图形的形状和大小”知:左图中所示的图案平移后得到的图案是B项,故选B.【题目点拨】本题考查了平移的性质,平移的性质是“经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移不改变图形的形状、大小和方向”.二、填空题(每小题3分,共24分)11、1【解题分析】连接OA、OB,如图,根据圆周角定理得到∠AOB=2∠ACB=90°,则OA=AB=1,再根据三角形中位线性质得到MN=AC,然后利用AC为直径时,AC的值最大可确定MN的最大值.【题目详解】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×1=1,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为1,故答案为1.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形中位线性质.12、【分析】根据数轴得出-1<a<0<1,根据二次根式的性质得出|a-1|-|a+1|,去掉绝对值符号合并同类项即可.【题目详解】∵从数轴可知:-1<a<0<1,

=|a-1|-|a+1|

=-a+1-a-1

=-2a.

故答案为-2a.【题目点拨】此题考查二次根式的性质,绝对值以及数轴的应用,解题关键在于掌握利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.13、﹣1【分析】根据题意得出顶点E坐标,利用平移的规律得出移动后的点的坐标,进而代入反比例函数即可求出k的值.【题目详解】解:由题意可知抛物线的顶点E坐标为(1,-2),把点E(1,-2)先向左平移3个单位,再向上平移1个单位所得对应点的坐标为(-2,2),∵点(-2,2)在双曲线上,∴k=-2×2=-1.故答案为:-1.【题目点拨】本题考查二次函数图象与几何变换和二次函数的性质以及待定系数法求反比例函数的解析式,根据题意求得平移后的顶点坐标是解题的关键.14、1【解题分析】试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案为1.考点:代数式求值.15、(1,4).【解题分析】试题解析:抛物线的对称轴为:点关于该抛物线的对称轴对称的点的坐标是故答案为16、25m【分析】根据垂径定理可得△BOD为直角三角形,且BD=AB,之后利用勾股定理进一步求解即可.【题目详解】∵点C是的中点,∴OC平分AB,∴∠BOD=90°,BD=AB=20m,设OB=x,则:OD=(x-10)m,∴,解得:,∴OB=25m,故答案为:25m.【题目点拨】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.17、【解题分析】试题分析:根据已知数字等式得出变化规律,即可得出答案:∵,,,,…,∴。18、【分析】根据方程的根的定义,得,结合完全平方公式,即可求解.【题目详解】∵是方程的一个根,∴,即:∴=1+1=1.故答案是:1.【题目点拨】本题主要考查方程的根的定义以及完全平方公式,,掌握完全平方公式,是解题的关键.三、解答题(共66分)19、2【分析】首先计算各锐角三角函数值,然后进行计算即可.【题目详解】原式=2-1+1【题目点拨】此题主要考查锐角三角函数的相关计算,牢记锐角三角函数值是解题关键.20、(1)点A、B、C的坐标分别为:(−1,0)、(5,0)、(0,−5);(2)P(2,3);(3)D(,);(4)M的坐标为:(2,7)或(2,−3)或(2,6)或(2,−1).【分析】(1)令y=0,则x=−1或5,令x=0,则y=−5,即可求解;(2)点B是点A关于函数对称轴的对称点,连接BC交抛物线对称轴于点P,则点P为所求,即可求解;(3)S△BDE:S△BEF=2:3,则,即:,即可求解;(4)分MB为斜边、MC为斜边、BC为斜边三种情况,分别求解即可.【题目详解】(1)令y=0,则x=−1或5,令x=0,则y=−5,故点A、B、C的坐标分别为:(−1,0)、(5,0)、(0,−5);(2)抛物线的对称轴为:x=2,点B是点A关于函数对称轴的对称点,连接BC交抛物线对称轴于点P,则点P为所求,直线BC的表达式为:y=−x+5,当x=2时,y=3,故点P(2,3);(3)设点D(x,−x2+4x+5),则点E(x,−x+5),∵S△BDE:S△BEF=2:3,则,即:,解得:m=或5(舍去5),故点D(,);(4)设点M(2,m),而点B、C的坐标分别为:(5,0)、(0,−5),则MB2=9+m2,MC2=4+(m−5)2,BC2=50,①当MB为斜边时,则9+m2=4+(m−5)2+50,解得:m=7;②当MC为斜边时,则4+(m−5)2=9+m2+50,可得:m=−3;③当BC为斜边时,则4+(m−5)2+9+m2=50可得:m=6或−1;综上点M的坐标为:(2,7)或(2,−3)或(2,6)或(2,−1).【题目点拨】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、图形的面积计算等,其中(4),要注意分类求解,避免遗漏.21、(1)证明见解析;(2)矩形ABCD的面积为16(cm2).【解题分析】(1)首先证明四边形EFGH是平行四边形,然后再证明HF=EG;

(2)根据题干求出矩形的边长CD和BC,然后根据矩形面积公式求得.【题目详解】证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即OE=OF=OG=OH,∴四边形EFGH是矩形.解:∵G是OC的中点,∴GO=GC.又∵DG⊥AC,∴CD=OD.∵F是BO中点,OF=2cm,∴BO=4cm.∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB==4(cm),∴矩形ABCD的面积为4×4=16(cm2).【题目点拨】本题主要考查矩形的判定,首先要判定四边形是平行四边形,然后证明对角线相等.22、(1)35°;(2)证明见解析.【分析】(1)由点E是△ABC的内心,∠BAC=70°,易得∠CAD=,进而得出∠CBD=∠CAD=35°;(2)由点E是△ABC的内心,可得E点为△ABC角平分线的交点,可得∠ABE=∠CBE,∠BAD=∠CAD,可推导出∠DBE=∠BED,可得DE=DB.【题目详解】(1)∵点E是△ABC的内心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是内心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.【题目点拨】此题考查了圆的内心的性质以及角平分线的性质等知识.此题综合性较强,注意数形结合思想的应用.23、(1)75°;(2)证明见解析;(3)或或.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数;(2)连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB,再根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出△ABC∽△PBA,得出答案即可;(3)记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值.【题目详解】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=30°,∴∠B=75°,(2)如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB,∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°-∠APB-∠B,∠ACB=180°-∠BAC-∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB,由(1)可知PA=PB,∴△ABC∽△PBA,∴,∴AB2=BC•PB;(3)如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=,∴MR=,(一)当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;(二)如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;(三)如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB=,∴PQ=,∴MQ=;(四)如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或.【题目点拨】此题主要考查了圆的综合题、等腰三角形的性质、三角形中位线定理,勾股定理,圆周角定理的综合应用,解决问题的关键是作辅助线构造直角三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.24、;;四边形可以为正方形,【分析】(1)由题意得出A,B坐标,并代入坐标利用待定系数法求出抛物线的函数表达式;(2)根据题意分别求出当过点时m的值以及当过点时m的值,并以此进行分析求得;(3)由题意设,代入解出n,并作,于,利用正方形性质以及全等三角形性质得出M为,将代入即可求得答案.【题目详解】解:将三点代入得解得;如图.关于对称的抛物线为当过点时有解得:当过点时有解得:;四边形可以为正方形由题意设,是抛物线第一象限上的点解得:(舍去)即如图作,于,于四边形为正方形易证为将代入得解得:(舍去)当时四边形为正方形.【题目点拨】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.25、(1)∠ADB=15°;(2)【分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论