2024届浙江省丽水市莲都区数学九年级第一学期期末质量跟踪监视模拟试题含解析_第1页
2024届浙江省丽水市莲都区数学九年级第一学期期末质量跟踪监视模拟试题含解析_第2页
2024届浙江省丽水市莲都区数学九年级第一学期期末质量跟踪监视模拟试题含解析_第3页
2024届浙江省丽水市莲都区数学九年级第一学期期末质量跟踪监视模拟试题含解析_第4页
2024届浙江省丽水市莲都区数学九年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省丽水市莲都区数学九年级第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.方程x2﹣2x﹣4=0的根的情况()A.只有一个实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.没有实数根2.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10003.m是方程的一个根,且,则的值为()A. B.1 C. D.4.如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是()A. B. C. D.5.如果关于的方程是一元二次方程,那么的值为:()A. B. C. D.都不是6.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短 B.先变短后变长C.先变长后变短 D.逐渐变长7.使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A. B. C. D.8.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠B=()A.80° B.100° C.110° D.120°9.若二次函数的图象经过点(﹣1,0),则方程的解为()A., B., C., D.,10.如图,在四边形中,,对角线、交于点有以下四个结论其中始终正确的有()①;②;③;④A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=_____.12.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.1.根据上述数据,估计口袋中大约有_______个黄球13.抛物线y=9x2﹣px+4与x轴只有一个公共点,则p的值是_____.14.已知圆的半径是,则该圆的内接正六边形的面积是__________15.如果x:y=1:2,那么=_____.16.计算:cos245°-tan30°sin60°=______.17.如图,在某一时刻,太阳光线与地面成的角,一只皮球在太阳光的照射下的投影长为,则皮球的直径是______.18.若m是方程5x2﹣3x﹣1=0的一个根,则15m﹣+2010的值为_____.三、解答题(共66分)19.(10分)如图1.正方形的边长为,点在上,且.如图2.将线段绕点逆时针旋转,设旋转角为,并以为边作正方形,连接试问随着线段的旋转,与有怎样的数量关系?说明理由;如图3,在的条件下,若点恰好落在线段上,求点走过的路径长(保留).20.(6分)已知:二次函数,求证:无论为任何实数,该二次函数的图象与轴都在两个交点;21.(6分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.22.(8分)已知关于x的一元二次方程(a+c)x2+2bx+a-c=0,其中a、b、c分别为△ABC三边的长.(1)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)若△ABC是正三角形,试求这个一元二次方程的根.23.(8分)解方程或计算(1)解方程:3y(y-1)=2(y-1)(2)计算:sin60°cos45°+tan30°.24.(8分)如图,在中,D、E分别为BC、AC上的点.若,AB=8cm,求DE的长.25.(10分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.26.(10分)如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数.(2)若弦BC=8cm,求图中劣弧BC的长.

参考答案一、选择题(每小题3分,共30分)1、B【题目详解】Δ=b2-4ac=(-2)2-4×1×(-4)=20>0,所以方程有两个不相等的实数根.故选B.【题目点拨】一元二次方程根的情况:(1)b2-4ac>0,方程有两个不相等的实数根;(2)b2-4ac=0,方程有两个相等的实数根;(3)b2-4ac<0,方程没有实数根.注:若方程有实数根,那么b2-4ac≥0.2、D【分析】根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.【题目详解】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故选D.【题目点拨】此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.3、A【解题分析】将m代入关于x的一元二次方程x2+nx+m=0,通过解该方程即可求得m+n的值.【题目详解】解:∵m是关于x的一元二次方程x2+nx+m=0的根,

∴m2+nm+m=0,

∴m(m+n+1)=0;

又∵m≠0,

∴m+n+1=0,

解得m+n=-1;

故选:A.【题目点拨】本题考查了一元二次方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的解一定满足该一元二次方程的关系式.4、C【分析】根据图中符号所处的位置关系作答.【题目详解】解:从立体图形可以看出这X,菱形和圆都是相邻的关系,故B,D错误,当x在上面,菱形在前面时,圆在右边,故A错误,C正确.故选C.【题目点拨】此题主要考查了展开图折叠成几何体,动手折叠一下,有助于空间想象力的培养.5、C【分析】据一元二次方程的定义得到m-1≠0且m2-7=2,然后解不等式和方程即可得到满足条件的m的值.【题目详解】解:根据题意得m-1≠0且m2-7=2,

解得m=-1.

故选:C.【题目点拨】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.6、B【分析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.【题目详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.【题目点拨】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.7、C【解题分析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【题目详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【题目点拨】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.8、C【分析】直接利用圆内接四边形的性质分析得出答案.【题目详解】∵四边形ABCD内接于⊙O,E为CD延长线上一点,∠ADE=110°,∴∠B=∠ADE=110°.故选:C.【题目点拨】本题考查圆内接四边形的性质.熟练掌握圆内接四边形的性质:圆内接四边形的对角互补;.圆内接四边形的外角等于它的内对角是解题的关键.9、C【题目详解】∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.故选C.考点:抛物线与x轴的交点.10、C【分析】根据相似三角形的判定定理、三角形的面积公式判断即可.【题目详解】解:∵AB∥CD,∴△AOB∽△COD,①正确;∵∠ADO不一定等于∠BCO,∴△AOD与△ACB不一定相似,②错误;∴,③正确;∵△ABD与△ABC等高同底,∴,∵,∴,④正确;故选C.【题目点拨】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.二、填空题(每小题3分,共24分)11、100°【分析】根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE,代入数据进行计算即可得解.【题目详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,

∴∠CAE=40°,

∵∠BAC=60°,

∴∠BAE=∠BAC+∠CAE=60°+40°=100°.

故答案是:100°.【题目点拨】考查了旋转的性质,解题的关键是运用旋转的性质(图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等)得出∠CAE=40°.12、2【题目详解】解:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.1,设黄球有x个,∴0.1(x+10)=10,解得x=2.答:口袋中黄色球的个数很可能是2个.13、±1【解题分析】试题解析:抛物线与x轴只有一个交点,则△=b2-4ac=0,故:p2-4×9×4=0,解得p=±1.故答案为±1.14、【分析】根据正六边形被它的半径分成六个全等的等边三角形,再根据等边三角形的边长,求出等边三角形的高,再根据面积公式即可得出答案.【题目详解】解:连接、,作于,等边三角形的边长是2,,等边三角形的面积是,正六边形的面积是:;故答案为:.【题目点拨】本题考查的是正多边形和圆的知识,解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.15、【分析】根据合比性质,可得答案.【题目详解】解:,即.故答案为.【题目点拨】考查了比例的性质,利用了和比性质:.16、0【分析】直接利用特殊角的三角函数值代入进而得出答案.【题目详解】=.故答案为0.【题目点拨】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17、15【分析】由图可得AC即为投影长,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,利用三角函数可得AB长.【题目详解】解:如图,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,AC即为投影长.在中,,所以皮球的直径是15cm.故答案为:15.【题目点拨】本题考查了三角函数的应用,由图确定圆的投影长及直径是解题的关键.18、1【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【题目详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣=3,∴15m﹣+2010=3(5m﹣)+2010=9+2010=1,故答案为:1.【题目点拨】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.三、解答题(共66分)19、(1);(2)【分析】(1)利用已知条件得出,从而可得出结论(2)连接,交于连接,可得出CG=AG,接着可证明是等边三角形.,再找出,最后利用弧长公式求解即可.【题目详解】解:.理由如下:由题意,可知.又,..如图,连接,交于连接.四边形是正方形,与互相垂直平分.点在线段上,垂直平分..由题意,知,.又正方形的边长为,.,即是等边三角形...则点走过的路径长就是以为圆心,长为半径,且圆心角为105°的一段弧的弧长.即所以点走过的路径长是.【题目点拨】本题是一道利用旋转的性质来求解的题目,考查到的知识点有全等三角形的判定及性质,等边三角形的判定,旋转的性质以及求弧长的公式.综合性较强.20、见解析【分析】计算判别式,并且配方得到△=,然后根据判别式的意义得到结论.【题目详解】二次函数∵,,,∴,而,∴,即为任何实数时,方程都有两个不等的实数根,∴二次函数的图象与轴都有两个交点.【题目点拨】本题考查了抛物线与轴的交点:把求二次函数是常数,与轴的交点坐标问题转化为解关于的一元二次方程.21、(1)黄球有1个;(2);(3).【分析】(1)首先设口袋中黄球的个数为x个,根据题意得:,解此方程即可求得答案.(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案.(3)由若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;直接利用概率公式求解即可求得答案.【题目详解】解:(1)设口袋中黄球的个数为x个,根据题意得:,解得:x=1.经检验:x=1是原分式方程的解.∴口袋中黄球的个数为1个.(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:.(3)∵摸到红球得5分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,∴乙同学已经得了7分.∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率为:.22、(1)直角三角形;(2).x1=-1,x2=0【解题分析】试题分析:(1)根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的逆定理判断即可;(2)根据等边进行得出a=b=c,代入方程化简,即可求出方程的解.解:(1)△ABC是直角三角形,理由是:∵关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0有两个相等的实数根,∴△=0,即(﹣2b)2﹣4(a+c)(a﹣c)=0,∴a2=b2+c2,∴△ABC是直角三角形;(2)∵△ABC是等边三角形,∴a=b=c,∴方程(a+c)x2﹣2bx+(a﹣c)=0可整理为2ax2﹣2ax=0,∴x2﹣x=0,解得:x1=0,x2=1.考点:根的判别式;等边三角形的性质;勾股定理的逆定理.23、(1)y1=1,y2=;(2)【分析】(1)先移项,再用提公因式法解方程即可;(2)将三角函数的对应值代入计算即可.【题目详解】(1)3y(y-1)=2(y-1),,(3y-2)(y-1)=0,y1=1,y2=;(2)sin60°cos45°+tan30°,,=.【题目点拨】此题考查计算能力,(1)是解方程,解方程时需根据方程的特点选择适合的方法使计算简便;(2)是三角函数值的计算,熟记各角的三角函数值是解题的关键.24、【分析】根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论