版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省如皋市2024届数学九年级第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.关于x的一元二次方程有两个不相等的实数根,则实数m的取值范围为()A. B. C. D.2.下列事件中,是必然事件的是()A.购买一张彩票,中奖 B.射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180° D.经过有交通信号灯的路口,遇到红灯3.在下列几何体中,主视图、左视图和俯视图形状都相同的是()A. B. C. D.4.如图,平行于x轴的直线与函数y1=(a>1,x>1),y2=(b>1.x>1)的图象分别相交于A、B两点,且点A在点B的右侧,在X轴上取一点C,使得△ABC的面积为3,则a﹣b的值为()A.6 B.﹣6 C.3 D.﹣35.如图,AB是O的直径,AB=4,C为的三等分点(更靠近A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为()A.2 B. C. D.6.在单词probability(概率)中任意选择一个字母,选中字母“i”的概率是()A. B. C. D.7.反比例函数经过点(1,),则的值为()A.3 B. C. D.8.二次函数图像的顶点坐标是()A. B. C. D.9.已知二次函数y=ax2+bx+c的图象大致如图所示,则下列关系式中成立的是()A.a>0 B.b<0 C.c<0 D.b+2a>010.对于反比例函数,下列说法错误的是()A.它的图象分别位于第二、四象限B.它的图象关于成轴对称C.若点,在该函数图像上,则D.的值随值的增大而减小二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k的值为.12.将二次函数的图像向下平移个单位后,它的顶点恰好落在轴上,那么的值等于__________.13.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.14.如图,在边长为2的正方形ABCD中,以点D为圆心,AD长为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S1﹣S2的值为_____.(结果保留π)15.一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是__________.16.如图,在中,则AB的长为________(用含α和b的代数式表示)17.某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是____.18.已知反比例函数的图像上有两点M,N,且,,那么与之间的大小关系是_____________.三、解答题(共66分)19.(10分)如图,⊙O是Rt△ABC的外接圆,直径AB=4,直线EF经过点C,AD⊥EF于点D,∠ACD=∠B.(1)求证:EF是⊙O的切线;(2)若AD=1,求BC的长;(3)在(2)的条件下,求图中阴影部分的面积.20.(6分)请画出下面几何体的三视图21.(6分)小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径,高,求这个圆锥形漏斗的侧面积.22.(8分)已知:二次函数y=x2+bx+c经过原点,且当x=2时函数有最小值;直线AC解析式为y=kx-4,且与抛物线相交于B、C.(1)求二次函数解析式;(2)若S△AOB∶S△BOC=1:3,求直线AC的解析式;(3)在(2)的条件下,点E为线段BC上一动点(不与B、C重合),过E作x轴的垂线交抛物线于F、交x轴于G,是否存在点E,使△BEF和△CGE相似?若存在,请求出所有点E的坐标;若不存在,请说明理由.23.(8分)如图,已知为⊙的直径,为⊙的一条弦,点是⊙外一点,且,垂足为点,交⊙于点,的延长线交⊙于点,连接.(1)求证:;(2)若,求证:是⊙的切线;(3)若,,求⊙的半径.24.(8分)如图,三角形是以为底边的等腰三角形,点、分别是一次函数的图象与轴、轴的交点,点在二次函数的图象上,且该二次函数图象上存在一点使四边形能构成平行四边形.(1)试求、的值,并写出该二次函数表达式;(2)动点沿线段从到,同时动点沿线段从到都以每秒1个单位的速度运动,问:①当运动过程中能否存在?如果不存在请说明理由;如果存在请说明点的位置?②当运动到何处时,四边形的面积最小?此时四边形的面积是多少?25.(10分)小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).26.(10分)如图,某仓储中心有一斜坡AB,其坡比为i=1∶2,顶部A处的高AC为4m,B,C在同一水平面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方形货柜的侧面图,其中DE=2.5m,EF=2m.将货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据方程有两个不等的实数根,故△>0,得不等式解答即可.【题目详解】试题分析:由已知得△>0,即(﹣3)2﹣4m>0,解得m<.故选B.【题目点拨】此题考查了一元二次方程根的判别式.2、C【解题分析】事先能肯定它一定会发生的事件称为必然事件,根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】解:A、购买一张彩票,中奖,是随机事件,故A不符合题意;
B、射击运动员射击一次,命中靶心,是随机事件,故B不符合题意;
C、任意画一个三角形,其内角和是180°,是必然事件,故C符合题意;
D、经过有交通信号灯的路口,遇到红灯,是随机事件,故D不符合题意;
故选:C.【题目点拨】本题考查了随机事件、不可能事件,随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.3、C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依次找到主视图、左视图和俯视图形状都相同的图形即可.【题目详解】解:A、圆台的主视图和左视图相同,都是梯形,俯视图是圆环,故选项不符合题意;B、三棱柱的主视图和左视图、俯视图都不相同,故选项不符合题意;C、球的三视图都是大小相同的圆,故选项符合题意.D、圆锥的三视图分别为等腰三角形,等腰三角形,含圆心的圆,故选项不符合题意;故选C.【题目点拨】本题考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.4、A【分析】△ABC的面积=•AB•yA,先设A、B两点坐标(其y坐标相同),然后计算相应线段长度,用面积公式即可求解.【题目详解】设A(,m),B(,m),则:△ABC的面积=•AB•yA=•(﹣)•m=3,则a﹣b=2.故选A.【题目点拨】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A、B两点坐标,表示出相应线段长度即可求解问题.5、D【解题分析】取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出OD⊥AP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.【题目详解】解:如图,取AO的中点Q,连接CQ,QD,OD,∵C为的三等分点,∴的度数为60°,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∵Q为OA的中点,∴CQ⊥OA,∠OCQ=30°,∴OQ=,由勾股定理可得,CQ=,∵D为AP的中点,∴OD⊥AP,∵Q为OA的中点,∴DQ=,∴当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为.故选D【题目点拨】本题考查利用弧与圆心角的关系及垂径定理求相关线段的长度,并且考查线段最大值问题,利用圆的综合性质是解答此题的关键.6、A【解题分析】字母“i”出现的次数占字母总个数的比即为选中字母“i”的概率.【题目详解】解:共有11个字母,每个字母出现的可能性是相同的,字母i出现两次,其概率为.故选:A.【题目点拨】本题考查简单事件的概率,利用概率公式求解是解答此题的关键.7、B【解题分析】此题只需将点的坐标代入反比例函数解析式即可确定k的值.【题目详解】把已知点的坐标代入解析式可得,k=1×(-1)=-1.故选:B.【题目点拨】本题主要考查了用待定系数法求反比例函数的解析式,.8、D【分析】先把二次函数进行配方得到抛物线的顶点式,根据二次函数的性质即可得到其顶点坐标.【题目详解】∵,∴二次函数的顶点坐标为.
故选:D.【题目点拨】本题考查二次函数的顶点坐标,配方是解决问题的关键,属基础题.9、D【解题分析】分析:根据抛物线的开口、对称轴及与y轴的交点的位置,可得出a<1、c>1、b>﹣2a,进而即可得出结论.详解:∵抛物线开口向下,对称轴大于1,与y轴交于正半轴,∴a<1,﹣>1,c>1,∴b>﹣2a,∴b+2a>1.故选D.点睛:本题考查了二次函数图象与系数的关系,根据抛物线的对称轴大于1找出b>﹣2a是解题的关键.10、D【分析】根据反比例函数的性质对各选项逐一分析即可.【题目详解】解:反比例函数,,图像在二、四象限,故A正确.反比例函数,当时,图像关于对称;当时,图像关于对称,故B正确当,的值随值的增大而增大,,则,故C正确在第二象限或者第四象限,的值随值的增大而增大,故D错误故选D【题目点拨】本题主要考查了反比例函数的性质.二、填空题(每小题3分,共24分)11、【解题分析】试题分析:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB=10°.∵OA=OB,∴△AOB是等边三角形.∴OA=OB=AB=1.∴BM=OB•sin∠BOA=1×sin10°=,OM=OB•COS10°=2.∴B的坐标是(2,).∵B在反比例函数位于第一象限的图象上,∴k=2×=.12、1【分析】利用平移的性质得出平移后解析式,进而得出其顶点坐标,再代入直线y=0求出即可.【题目详解】y=x2-2x+2=(x-1)2+1,
∴将抛物线y=x2-2x+2沿y轴向下平移1个单位,使平移后的抛物线的顶点恰好落在x轴上,
∴m=1,
故答案为:1.【题目点拨】此题考查二次函数的性质,二次函数的平移,正确记忆二次函数平移规律是解题关键.13、【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【题目详解】设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=,把A(-2,-3)代入得:k=6,则过点A的反比例解析式为y=,故答案为y=.【题目点拨】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.14、π【分析】如图,设图中③的面积为S1.构建方程组即可解决问题.【题目详解】解:如图,设图中③的面积为S1.由题意:,可得S1﹣S2=π,故答案为π.【题目点拨】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.15、【解题分析】试题分析:骰子共有六个面,每个面朝上的机会是相等的,而奇数有1,3,5;根据概率公式即可计算.试题解析:∵骰子六个面中奇数为1,3,5,∴P(向上一面为奇数)=.考点:概率公式.16、.【分析】根据余弦函数的定义可解.【题目详解】解:根据余弦函数的定义可知,所以AB=.故答案是:.【题目点拨】本题考查了三角函数的定义,牢记定义是关键.三角函数的定义是本章中最重要最基础的知识点,一定要掌握.17、【题目详解】解:选中女生的概率是:.18、【分析】根据反比例函数特征即可解题。【题目详解】∵∴∵,∴,∴故答案为【题目点拨】本题考查反比例函数上点的坐标特征,注意反比例函数是分别在各自象限内存在单调性。三、解答题(共66分)19、(1)见解析;(2);(3)【分析】(1)连接OC,由OB=OC,利用等边对等角得到∠BCO=∠B,由∠ACD=∠B,得到∠ACD+∠OCA=90°,即可得到EF为圆O的切线;(2)证明Rt△ABC∽Rt△ACD,可求出AC=2,由勾股定理求出BC的长即可;(3)求出∠B=30°,可得∠AOC=60°,在Rt△ACD中,求出CD,然后用梯形ADCO和扇形OAC的面积相减即可得出答案.【题目详解】(1)证明:连接OC,∵AB是⊙O直径,∴∠ACB=90°,即∠BCO+∠OCA=90°,∵OB=OC,∴∠BCO=∠B,∵∠ACD=∠B,∴∠ACD+∠OCA=90°,∵OC是⊙O的半径,∴EF是⊙O的切线;(2)解:在Rt△ABC和Rt△ACD中,∵∠ACD=∠B,∠ACB=∠ADC,∴Rt△ABC∽Rt△ACD,∴,∴AC2=AD•AB=1×4=4,∴AC=2,∴;(3)解:∵在Rt△ABC中,AC=2,AB=4,∴∠B=30°,∴∠AOC=60°,在Rt△ADC中,∠ACD=∠B=30°,AD=1,∴CD===,∴S阴影=S梯形ADCO﹣S扇形OAC=.【题目点拨】本题是圆的综合题,考查了切线的判定,圆周角定理,相似三角形的判定与性质,勾股定理以及扇形面积的计算,熟练掌握圆的基本性质是解本题的关键.20、详见解析.【分析】根据几何体分别画出从正面,上面和左面看到的图形即可.【题目详解】如图所示:主视图左视图俯视图【题目点拨】本题主要考查几何体的三视图,掌握三视图的画法是解题的关键.21、【解题分析】首先根据底面半径OB=3cm,高OC=4cm,求出圆锥的母线长,再利用圆锥的侧面积公式求出即可.【题目详解】解:根据题意,由勾股定理可知.,圆锥形漏斗的侧面积.【题目点拨】此题主要考查了圆锥的侧面积公式求法,正确的记忆圆锥侧面积公式是解决问题的关键.22、(1)y=x2-4x;(2)直线AC的解析式为y=x-4;(1)存在,E点坐标为E(1.-1)或E(2,-2).【分析】(1)根据二次函数y=x2+bx+c经过原点可知c=0,当x=2时函数有最小值可知对称轴是x=2,故可求出b,即可求解;(2)连接OB,OC,过点C作CD⊥y轴于D,过点B作BE⊥y轴于E,根据得到,,由EB∥DC,对应线段成比例得到,再联立y=kx-4与y=x2-4x得到方程kx-4=x2-4x,即x2-(k+4)x+4=0,求出x1,x2,根据x1,x2之间的关系得到关于k的方程即可求解;(1)根据(1)(2)求出A,B,C的坐标,设E(m,m-4)(1<m<4)则G(m,0)、F(m,m2-4m),根据题意分∠EFB=90°和∠EBF=90°,分别找到图形特点进行列式求解.【题目详解】解:(1)∵二次函数y=x2+bx+c经过原点,∴c=0∵当x=2时函数有最小值∴,∴b=-4,c=0,∴y=x2-4x;(2)如图,连接OB,OC,过点C作CD⊥y轴于D,过点B作BE⊥y轴于E,∵∴∴∵EB∥DC∴∵y=kx-4交y=x2-4x于B、C∴kx-4=x2-4x,即x2-(k+4)x+4=0∴,或∵xB<xC∴EB=xB=,DC=xC=∴4•=解得k=-9(不符题意,舍去)或k=1∴k=1∴直线AC的解析式为y=x-4;(1)存在.理由如下:由题意得∠EGC=90°,∵直线AC的解析式为y=x-4∴A(0,-4),C(4,0)联立两函数得,解得或∴B(1,-1)设E(m,m-4)(1<m<4)则G(m,0)、F(m,m2-4m)①如图,当∠EFB=90°,即CG//BF时,△BFE∽△CGE.此时F点纵坐标与B点纵坐标相等.∴F(m,-1)即m2-4m=-1解得m=1(舍去)或m=1∴F(1,-1)故此时E(1,-1)②如图当∠EBF=90°,△FBE∽△CGE∵C(4,0),A(0,4)∴OA=OC∴∠GCE=45°=∠BEF=∠BFE过B点做BH⊥EF,则H(m,-1)∴BH=m-1又∵∠GCE=45°=∠BEF=∠BFE∴△BEF是等腰直角三角形,又BH⊥EF∴EH=HF,EF=2BH∴(m-4)-(m2-4m)=2(m-1)解得m1=1(舍去)m2=2∴E(2,-2)综上,E点坐标为E(1.-1)或E(2,-2).【题目点拨】此题主要考查二次函数的图像及几何综合,解题的关键是熟知二次函数的图像与性质、平行线分线段成比例、相似三角形及等腰三角形的性质.23、(1)见解析;(2)见解析;(3)5【分析】(1)根据圆周角定理可得出,再结合,即可证明结论;(2)连接,利用三角形内角和定理以及圆周角定理可得出,,得出即可证明;(3)由已知条件得出,设,则,利用勾股定理求解即可.【题目详解】(1)证明:∵是直径,∴,∵,∴,∴;(2)证明:如图,连接,∵,∴,∴,∵,∴,∵,∴,∵,∴,∴,∵是半径,∴是⊙的切线;(3)解:∵∴又∵∴设∵∴在中,解得,,(舍去)∴⊙的半径为5.【题目点拨】本题是一道关于圆的综合题目,涉及到的知识点有平行线的判定、切线的判定、三角形内角和定理、勾股定理、圆周角定理等,掌握以上知识点是解此题的关键.24、(1),;(2)①当点运动到距离点个单位长度处,有;②当点运动到距离点个单位处时,四边形面积最小,最小值为.【分析】(1)根据一次函数解析式求出A和C的坐标,再由△ABC是等腰三角形可求出点B的坐标,根据平行四边形的性质求出点D的坐标,利用待定系数法即可得出二次函数的表达式;(2)①设点P运动了t秒,PQ⊥AC,进而求出AP、CQ和AQ的值,再由△APQ∽△CAO,利用对应边成比例可求出t的值,即可得出答案;②将问题化简为△APQ的面积的最大值,根据几何关系列出关于时间的二次函数,根据二次函数的性质,求出函数的最大值,即求出△APQ的面积的最大值,进而求出四边形PDCQ面积的最小值.【题目详解】解:(1)由,令,得,所以点;令,得,所以点,∵是以为底边的等腰三角形,∴点坐标为,又∵四边形是平行四边形,∴点坐标为,将点、点代入二次函数,可得,解得:,故该二次函数解析式为:.(2)∵,,∴.①设点运动了秒时,,此时,,,∵,∴,,∴,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年体外诊断(IVD)高端试剂项目可行性研究报告
- 2026年原子级精密测量设备项目公司成立分析报告
- 2026年中药配方颗粒智能制造项目公司成立分析报告
- 2026江西九江瑞昌市国投建设工程集团有限公司招聘变更2人备考题库附答案详解ab卷
- 2026福建泉州石狮市蚶江镇中心幼儿园教师、保育员招聘备考题库附答案详解(综合题)
- 2026海南海口市琼山区劳动就业和社会保障管理中心招聘公益性岗位工作人员2人备考题库带答案详解(完整版)
- 2026陕西西安音乐学院专任教师招聘10人备考题库带答案详解(综合卷)
- 2026福建新华发行(集团)有限责任公司永安分公司招聘备考题库带答案详解(精练)
- 2026甘肃定西临洮县文庙巷社区卫生服务中心招聘卫生专业技术人员5人备考题库带答案详解(黄金题型)
- 2026甘肃兰州七里河能化集团校园招聘183人备考题库及答案详解(新)
- 2026年内蒙古商贸职业学院单招职业技能考试题库附答案解析
- 水电站电气设备检修方案
- 肠套叠诊疗指南(2025年版)
- 2025年中科大入学笔试及答案
- 蝶阀培训课件
- 污水处理厂员工劳动合同标准模板
- 2026年湖南电气职业技术学院单招职业技能测试必刷测试卷附答案
- 矩阵特征值快速计算方法-洞察及研究
- 2023版金属非金属地下矿山重大事故隐患判定标准
- JJG596-2012电子式交流电能表
- 基于Java电影院售票系统
评论
0/150
提交评论