版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省揭阳市产业园区九年级数学第一学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,点C、D在圆O上,AB是直径,∠BOC=110°,AD∥OC,则∠AOD=()A.70° B.60° C.50° D.40°2.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=28º,则∠P的度数是()A.50º B.58ºC.56º D.55º3.如图一块直角三角形ABC,∠B=90°,AB=3,BC=4,截得两个正方形DEFG,BHJN,设S1=DEFG的面积,S2=BHJN的面积,则S1、S2的大小关系是()A.S1>S2 B.S1<S2 C.S1=S2 D.不能确定4.如图,某数学兴趣小组将长为,宽为的矩形铁丝框变形为以为圆心,为半径的扇形(忽略铁丝的粗细),则所得扇形的面积为()A. B. C. D.5.如图,在半径为的中,弦长,则点到的距离为()A. B. C. D.6.一元二次方程x2﹣4x=0的根是()A.x1=0,x2=4 B.x1=0,x2=﹣4 C.x1=x2=2 D.x1=x2=47.在平面直角坐标系中,把点绕原点顺时针旋转,所得到的对应点的坐标为()A. B. C. D.8.在下面四个选项的图形中,不能由如图图形经过旋转或平移得到的是()A. B. C. D.9.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.1010.若关于的一元二次方程的一个根是,则的值是()A.2011 B.2015 C.2019 D.202011.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A. B. C. D.12.若,则等于()A. B. C. D.二、填空题(每题4分,共24分)13.如图,点是反比例函数图象上的两点,轴于点,轴于点,作轴于点,轴于点,连结,记的面积为,的面积为,则___________(填“>”或“<”或“=”)14.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为_____.15.在中,,,则______.16.一组数据3,2,1,4,的极差为5,则为______.17.如图,一段抛物线记为,它与轴交于两点、,将绕旋转得到,交轴于,将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第8段抛物线上,则等于__________18.如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为____米.三、解答题(共78分)19.(8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=4,⊙O的半径为,求BC的长.20.(8分)重庆八中建校80周年,在体育、艺术、科技等方面各具特色,其中排球选修课是体育特色项目之一.体育组老师为了了解初一年级学生的训练情况,随机抽取了初一年级部分学生进行1分钟垫球测试,并将这些学生的测试成绩(即1分钟的垫球个数,且这些测试成绩都在60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级(不包括90),90~120范围内的记为C级(不包括120),120~150范围内的记为B级(不包括150),150~180范围内的记为A级.现将数据整理绘制成如下两幅不完整的统计图,其中在扇形统计图中A级对应的圆心角为90°,请根据图中的信息解答下列问题:(1)在这次测试中,一共抽取了名学生,并补全频数分布直方图:在扇形统计图中,D级对应的圆心角的度数为度.(2)王攀同学在这次测试中1分钟垫球140个.他为了了解自己垫球个数在年级排名的大致情况,他把成绩为B等的全部同学1分钟垫球人数做了统计,其统计结果如表:成绩(个)120125130135140145人数(频数)2831098(垫球个数计数原则:120<垫球个数≤125记为125,125<垫球个数≤130记为130,依此类推)请你估计王攀同学的1分钟垫球个数在年级排名的大致情况.21.(8分)已知二次函数中,函数与自变量的部分对应值如下表:(1)求该二次函数的关系式;(2)若,两点都在该函数的图象上,试比较与的大小.22.(10分)某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).23.(10分)如图,在四边形ABCD中,AD∥BC,AD=2BC,E为AD的中点,连接BD,BE,∠ABD=90°(1)求证:四边形BCDE为菱形.(2)连接AC,若AC⊥BE,BC=2,求BD的长.24.(10分)用配方法解下列方程.(1);(2).25.(12分)直线与轴交于点,与轴交于点,抛物线经过两点.(1)求这个二次函数的表达式;(2)若是直线上方抛物线上一点;①当的面积最大时,求点的坐标;②在①的条件下,点关于抛物线对称轴的对称点为,在直线上是否存在点,使得直线与直线的夹角是的两倍,若存在,直接写出点的坐标,若不存在,请说明理由.26.已知反比例函数的图象经过点A(2,6).(1)求这个反比例函数的解析式;(2)这个函数的图象位于哪些象限?y随x的增大如何变化?(3)点B(3,4),C(5,2),D(,)是否在这个函数图象上?为什么?
参考答案一、选择题(每题4分,共48分)1、D【分析】根据平角的定义求得∠AOC的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD的度数.【题目详解】∵∠BOC=110°,∠BOC+∠AOC=180°∴∠AOC=70°∵AD∥OC,OD=OA∴∠D=∠A=70°∴∠AOD=180°−2∠A=40°故选:D.【题目点拨】此题考查圆内角度求解,解题的关键是熟知圆的基本性质、平行线性质及三角形内角和定理的运用.2、C【分析】利用切线长定理可得切线的性质的PA=PB,,则,,再利用互余计算出,然后在根据三角形内角和计算出的度数.【题目详解】解:∵PA,PB是⊙O的切线,A,B为切点,∴PA=PB,,∴在△ABP中∴故选:C.【题目点拨】本题主要考查了切线长定理以及切线的性质,熟练掌握切线长定理以及切线性质是解题的关键.3、B【分析】根据勾股定理求出AC,求出AC边上的高BM,根据相似三角形的性质得出方程,求出方程的解,即可求得S1,如图2,根据相似三角形的性质列方程求得HJ=,于是得到S2=()2>()2,即可得到结论.【题目详解】解:如图1,设正方形DEFG的边长是x,∵△ABC是直角三角形,∠B=90°,AB=3,BC=4,∴由勾股定理得:AC=5,过B作BM⊥AC于M,交DE于N,由三角形面积公式得:BC×AB=AC×BM,∵AB=3,AC=5,BC=4,∴BM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DE∥AC,∴△BDE∽△ABC,∴=,∴=,∴x=,即正方形DEFG的边长是;∴S1=()2,如图2,∵HJ∥BC,∴△AHJ∽△ABC,∴=,即=,∴HJ=,∴S2=()2>()2,∴S1<S2,故选:B.【题目点拨】本题考查了相似三角形的性质和判定,三角形面积公式,正方形的性质的应用,熟练掌握相似三角形的判定和性质是解题的关键.4、B【分析】根据已知条件可得弧BD的弧长为6,然后利用扇形的面积公式:计算即可.【题目详解】解:∵矩形的长为6,宽为3,
∴AB=CD=6,AD=BC=3,
∴弧BD的长=18-12=6,故选:B.【题目点拨】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式5、B【分析】过点O作OC⊥AB于点C,由在半径为50cm的⊙O中,弦AB的长为50cm,可得△OAB是等边三角形,继而求得∠AOB的度数,然后由三角函数的性质,求得点O到AB的距离.【题目详解】解:过点O作OC⊥AB于点C,如图所示:
∵OA=OB=AB=50cm,
∴△OAB是等边三角形,
∴∠OAB=60°,∵OC⊥AB故选:B【题目点拨】此题考查了垂径定理、等边三角形的判定与性质、三角函数,熟练掌握垂径定理,证明△OAB是等边三角形是解决问题的关键.6、A【分析】把一元二次方程化成x(x-4)=0,然后解得方程的根即可选出答案.【题目详解】解:∵一元二次方程x2﹣4x=0,∴x(x-4)=0,∴x1=0,x2=4,故选:A.【题目点拨】本题考查了解一元二次方程,熟悉解一元二次方程的方法是解题的关键.7、C【分析】根据题意得点P点P′关于原点的对称,然后根据关于原点对称的点的坐标特点即可得解.【题目详解】∵P点坐标为(3,-2),∴P点的原点对称点P′的坐标为(-3,2).故选C.【题目点拨】本题主要考查坐标与图形变化-旋转,解此题的关键在于熟练掌握其知识点.8、C【分析】由题图图形,旋转或平移,分别判断、解答即可.【题目详解】A、由图形顺时针旋转90°,可得出;故本选项不符合题意;
B、由图形逆时针旋转90°,可得出;故本选项不符合题意;
C、不能由如图图形经过旋转或平移得到;故本选项符合题意;
D、由图形顺时针旋转180°,而得出;故本选项不符合题意;
故选:C.【题目点拨】本题考查了旋转,旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.9、C【解题分析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【题目详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【题目点拨】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.10、C【分析】根据方程解的定义,求出a-b,利用作图代入的思想即可解决问题.【题目详解】∵关于x的一元二次方程的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.【题目点拨】此题考查一元二次方程的解,解题关键在于掌握运算法则.11、C【解题分析】∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===,故选C.点睛:此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.12、B【分析】首先根据已知等式得出,然后代入所求式子,即可得解.【题目详解】∵∴∴故答案为B.【题目点拨】此题主要考查利用已知代数式化为含有同一未知数的式子,即可解题.二、填空题(每题4分,共24分)13、=【分析】连接OP、OQ,根据反比例函数的几何意义,得到,由OM=AP,OB=NQ,得到,即可得到.【题目详解】解:如图,连接OP、OQ,则∵点P、点Q在反比例函数的图像上,∴,∵四边形OMPA、ONQB是矩形,∴OM=AP,OB=NQ,∵,,∴,∴,∴;故答案为:=.【题目点拨】本题考查了反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义判断面积相等.14、2.【解题分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【题目详解】∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣2),∴当y=0时,0=(x﹣3)(x﹣2),解得:x2=3,x2=2.∵3﹣2=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.故答案为:2.【题目点拨】本题考查了抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.15、【分析】根据题意画出图形,进而得出cosB=求出即可.【题目详解】解:∵∠A=90°,AB=3,BC=4,
则cosB==.
故答案为:.【题目点拨】本题考查了锐角三角函数的定义,正确把握锐角三角函数关系是解题的关键.16、-1或1【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【题目详解】解:当x是最大值,则x-(1)=5,所以x=1;当x是最小值,则4-x=5,所以x=-1;故答案为-1或1.【题目点拨】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.17、【分析】求出抛物线与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方、第偶数号抛物线都在x轴下方,再根据向右平移横坐标相加表示出抛物线的解析式,然后把点P的横坐标代入计算即可.【题目详解】抛物线与x轴的交点为(0,0)、(2,0),将绕旋转180°得到,则的解析式为,同理可得的解析式为,的解析式为的解析式为的解析式为的解析式为的解析式为∵点在抛物线上,∴故答案为【题目点拨】本题考查的是二次函数的图像性质与平移,能够根据题意确定出的解析式是解题的关键.18、【分析】设BC=x,则AB=2x,再根据勾股定理得到x2+(2x)2=52,再方程的解即可.【题目详解】如图所示:设BC=x,则AB=2x,依题意得:x2+(2x)2=52解得x=或x=-(舍去).故答案为:.【题目点拨】考查了解直角三角形,解决本题的关键是构造直角三角形利用勾股定理得出.三、解答题(共78分)19、(1)证明见解析;(2)BC=1;【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【题目详解】(1)连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBO+∠OBA=90°,∵OC=OB,∴∠C=∠CBO,∴∠C+∠OBA=90°,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)∵⊙O的半径为,∴OB=,AC=2,∵OP∥BC,∴∠C=∠CBO=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=1.【题目点拨】本题考查了切线的判定与性质、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键.20、(1)100,54;(2)王攀同学的1分钟垫球个数在年级排名是34名到42名之间【分析】(1)根据A级的人数和在扇形统计图中的度数可以求得本次抽查的学生人数,从而可以计算出D级的人数,进而可以将频数分布直方图补充完整,再根据统计图中的数据可以求得D级对应的圆心角的度数;(2)根据统计图中的数据和表格中的数据可以估计王攀同学的1分钟垫球个数在年级排名的大致情况.【题目详解】(1)在这次测试中,一共抽取了25÷=100名学生,D级的人数为:100﹣20﹣40﹣25=15,补全的频数分布直方图如图所示:D级对应的圆心角的度数为:360°×=54°,故答案为:100,54;(2)由统计图可知,A级有25人,由表格可知,垫球145个的8人,垫球140个9人,25+8=33,33+9=42,∴王攀同学的1分钟垫球个数在年级排名是34名到42名之间.【题目点拨】本题主要考查扇形统计图和频数直方图的综合应用,理解扇形统计图和频数直方图中数据的意义,是解题的关键.21、(1);(2)当时,;当时,;当时,.【分析】(1)根据表格得到(0,5)与(1,2)都在函数图象上,代入函数解析式求出b与c的值,即可确定出解析式;(2)求出,根据m的取值分类讨论即可求解.【题目详解】根据题意,当时,;当时,;解得:,该二次函数关系式为;(2),两点都在函数的图象上,,,①当,即时,;②当,即时,;③当,即时,.【题目点拨】此题考查了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,以及二次函数的最值,熟练掌握待定系数法是解本题的关键.22、AC=6米;CD=5.2米.【分析】根据题意和正弦的定义求出AB的长,根据余弦的定义求出CD的长.【题目详解】解:由题意得,AB⊥EB,CD⊥AE,∴∠CDA=∠EBA=90°,∵∠E=30°,∴AB=AE=8米,∵BC=2米,∴AC=AB﹣BC=6米,∵∠DCA=90°﹣∠DAC=30°,∴CD=AC×cos∠DCA=6×≈5.2(米).【题目点拨】本题考查了解直角三角形的应用,解决本题的关键是①掌握特殊角的函数值,②能根据题意做构建直角三角形,③熟练掌握直角三角形的边角关系.23、(1)见解析;(2)【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)连接AC,可证AB=BC,由勾股定理可求出BD=.【题目详解】(1)证明:∵∠ABD=90°,E是AD的中点,∴BE=DE=AE,∵AD=2BC,∴BC=DE,∵AD∥BC,∴四边形BCDE为平行四边形,∵BE=DE,∴四边形BCDE为菱形;(2)连接AC,如图,∵由(1)得BC=BE,AD∥BC,∴四边形ABCE为平行四边形,∵AC⊥BE,∴四边形ABCE为菱形,∴BC=AB=2,AD=2BC=4,∵∠ABD=90°,∴BD===.【题目点拨】本题考查菱形的判定和性质、直角三角形斜边中线的性质、等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋抗震性能评估方案
- 燃气工程技术指标体系建立
- 照明工程预算编制方案
- 分散式污水处理技术
- 给水施工现场管理规范
- 钢结构减震设计方案
- 2026年重庆电信职业学院单招职业倾向性考试模拟测试卷附答案
- 水体富营养化治理
- 河道水质检测设备选型
- 2026年达州职业技术学院单招职业技能考试模拟测试卷及答案1套
- (2025年)四川省自贡市纪委监委公开遴选公务员笔试试题及答案解析
- 2026届江苏省常州市高一上数学期末联考模拟试题含解析
- 2026年及未来5年市场数据中国水质监测系统市场全面调研及行业投资潜力预测报告
- 2026安徽省农村信用社联合社面向社会招聘农商银行高级管理人员参考考试试题及答案解析
- 强夯地基施工质量控制方案
- 艺考机构协议书
- 2025年12月27日四川省公安厅遴选面试真题及解析
- 2025-2030中国海洋工程装备制造业市场供需关系研究及投资策略规划分析报告
- 《生态环境重大事故隐患判定标准》解析
- 2025年度吉林省公安机关考试录用特殊职位公务员(人民警察)备考笔试试题及答案解析
- 岩板采购合同范本
评论
0/150
提交评论