




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南邵阳区六校联考2024届数学九上期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,将绕点,按逆时针方向旋转120°,得到(点的对应点是点,点的对应点是点),连接.若,则的度数为()A.15° B.20° C.30° D.45°2.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.3.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=254.一元二次方程x2﹣3x=0的两个根是()A.x1=0,x2=﹣3 B.x1=0,x2=3 C.x1=1,x2=3 D.x1=1,x2=﹣35.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个6.下列二次根式中,是最简二次根式的是()A. B. C. D.7.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1 B.﹣3 C.5 D.18.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC的长为()A.3 B.4 C.5 D.69.方程化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是()A.5,6,-8 B.5,-6,-8 C.5,-6,8 D.6,5,-810.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()A. B. C. D.11.关于的一元一次方程的解为,则的值为()A.5 B.4 C.3 D.212.如图,边长为a,b的长方形的周长为14,面积为10,则a3b+ab3的值为()A.35 B.70 C.140 D.290二、填空题(每题4分,共24分)13.方程的一次项系数是________.14.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯长为,坡角为;改造后的斜坡式自动扶梯的坡角为,则改造后的斜坡式自动扶梯的长度约为________.(结果精确到,温馨提示:,,)15.关于x的一元二次方程有两个不相等的实数根,则实数a的取值范围是______.16.在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,若AE=2,△ADE的面积为4,四边形BCED的面积为5,则边AB的长为________.17.不等式组的整数解的和是__________.18.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)三、解答题(共78分)19.(8分)学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下:得分109876人数33211(1)计算这10名同学这次测试的平均得分;(2)如果得分不少于9分的定义为“优秀”,估计这500名学生对“八礼四仪”掌握情况优秀的人数;(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?20.(8分)如图,AB是⊙O的直径,点C是⊙O上一点(点C不与A,B重合),连接CA,CB.∠ACB的平分线CD与⊙O交于点D.(1)求∠ACD的度数;(2)探究CA,CB,CD三者之间的等量关系,并证明;(3)E为⊙O外一点,满足ED=BD,AB=5,AE=3,若点P为AE中点,求PO的长.21.(8分)如图,顶点为P(2,﹣4)的二次函数y=ax2+bx+c的图象经过原点,点A(m,n)在该函数图象上,连接AP、OP.(1)求二次函数y=ax2+bx+c的表达式;(2)若∠APO=90°,求点A的坐标;(3)若点A关于抛物线的对称轴的对称点为C,点A关于y轴的对称点为D,设抛物线与x轴的另一交点为B,请解答下列问题:①当m≠4时,试判断四边形OBCD的形状并说明理由;②当n<0时,若四边形OBCD的面积为12,求点A的坐标.22.(10分)如图,为了测量一栋楼的高度,小明同学先在操场上处放一面镜子,向后退到处,恰好在镜子中看到楼的顶部;再将镜子放到处,然后后退到处,恰好再次在镜子中看到楼的顶部(在同一条直线上),测得,如果小明眼睛距地面高度,为,试确定楼的高度.23.(10分)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为_____.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.24.(10分)天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B测得仰角为60°,已知AB=20米,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果精确到0.1米)25.(12分)教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶次,每次射靶的成绩情况如图所示.甲射靶成绩的条形统计图乙射靶成绩的折线统计图()请你根据图中的数据填写下表:平均数众数方差甲__________乙____________________()根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.26.万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了,该经销商购进甲的数量比原计划增加了,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.【题目详解】解:∵将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,
∴∠BAB′=∠CAC′=120°,AB=AB′,
∴∠AB′B=(180°-120°)=30°,
∵AC′∥BB′,
∴∠C′AB′=∠AB′B=30°,
∴∠CAB=∠C′AB′=30°,
故选:C.【题目点拨】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.2、D【分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意;故选:D.【题目点拨】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原来的图形重合.3、C【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=1,把相应数值代入即可求解.【题目详解】解:第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36×(1﹣x)2=1.故选:C.【题目点拨】考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.4、B【分析】利用因式分解法解一元二次方程即可.【题目详解】x2﹣1x=0,x(x﹣1)=0,x=0或x﹣1=0,x1=0,x2=1.故选:B.【题目点拨】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).5、B【题目详解】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选:B.【题目点拨】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6、C【分析】最简二次根式须同时满足两个条件:一是被开方数中不含分母,二是被开方数中不含能开的尽方的因数或因式,据此逐项判断即得答案.【题目详解】解:A、,故不是最简二次根式,本选项不符合题意;B、中含有分母,故不是最简二次根式,本选项不符合题意;C、是最简二次根式,故本选项符合题意;D、,故不是最简二次根式,本选项不符合题意.故选:C.【题目点拨】本题考查了最简二次根式的定义,属于基础题型,熟知概念是关键.7、D【分析】把x=﹣1代入方程2x2﹣mx﹣3=0得到2+m﹣3=0,然后解关于m的方程即可.【题目详解】把x=﹣1代入方程2x2﹣mx﹣3=0得2+m﹣3=0,解得m=1.故选D.【题目点拨】本题考查了一元二次方程的解,熟知能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解决问题的关键.8、D【分析】首先证明BD=DE=2AD,再由DE∥BC,可得,求出EC即可解决问题.【题目详解】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴,∴,∴EC=4,∴AC=AE+EC=2+4=6,故选:D.【题目点拨】此题考查平行线分线段成比例,由DE∥BC,可得,求出EC即可解决问题.9、C【分析】先将该方程化为一般形式,即可得出结论.【题目详解】解:先将该方程化为一般形式:.从而确定二次项系数为5,一次项系数为-6,常数项为8故选C.【考点】此题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.10、A【分析】根据应用题的题目条件建立方程即可.【题目详解】解:由题可得:即:故答案是:A.【题目点拨】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.11、D【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【题目详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【题目点拨】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.12、D【分析】由题意得,将所求式子化简后,代入即可得.【题目详解】由题意得:,即又代入可得:原式故选:D.【题目点拨】本题考查了长方形的周长和面积公式、多项式的因式分解、以及完全平方公式,熟练掌握相关内容是解题的关键.二、填空题(每题4分,共24分)13、-3【解题分析】对于一元二次方程的一般形式:,其中叫做二次项,叫做一次项,为常数项,进而直接得出答案.【题目详解】方程的一次项是,∴一次项系数是:故答案是:.【题目点拨】本题主要考查了一元二次方程的一般形式,正确得出一次项系数是解题关键.14、19.1【分析】先在Rt△ABD中,用三角函数求出AD,最后在Rt△ACD中用三角函数即可得出结论.【题目详解】解:在Rt△ABD中,∠ABD=30°,AB=10m,∴AD=ABsin∠ABD=10×sin30°=5(m),在Rt△ACD中,∠ACD=15°,sin∠ACD=,∴AC=≈≈19.1(m),即:改造后的斜坡式自动扶梯AC的长度约为19.1m.故答案为:19.1.【题目点拨】此题主要考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.15、且【解题分析】由关于x的一元二次方程有两个不相等的实数根,即可得判别式,继而可求得a的范围.【题目详解】关于x的一元二次方程有两个不相等的实数根,,解得:,方程是一元二次方程,,的范围是:且,故答案为:且.【题目点拨】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.16、1【分析】由∠AED=∠B,∠A是公共角,根据有两角对应相等的两个三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长.【题目详解】∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴,∵△ADE的面积为4,四边形BCED的面积为5,∴△ABC的面积为9,∵AE=2,∴,解得:AB=1.故答案为1.【题目点拨】本题考查相似三角形的判定性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17、【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【题目详解】解①得:x<1;解②得:x>−3;∴原不等式组的解集为−3<x<1;∴原不等式组的所有整数解为−2、−1、0∴整数解的和是:-2-1+0=-3.故答案为:-3.【题目点拨】此题考查解一元一次不等式组,解题关键在于掌握解不等式组.18、(答案不唯一)【分析】可设道路的宽为xm,将4块剩余矩形平移为一个长方形,长为(50-x)m,宽为(39-x)m.根据长方形面积公式即可列出方程.【题目详解】解:设道路的宽为xm,依题意有
(50-x)(39-x)=1.
故答案为:.【题目点拨】本题考查由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.解题关键是利用平移把4块试验田平移为一个长方形的长和宽.三、解答题(共78分)19、(1)8.6;(2)300;(3)不同意,理由见解析.【分析】(1)根据加权平均数的计算公式求平均数;(2)根据表中数据求出这10名同学中优秀所占的比例,然后再求500名学生中对“八礼四仪”掌握情况优秀的人数;(3)根据平均数和中位数的意义进行分析说明即可.【题目详解】解:(1)∴这10名同学这次测试的平均得分为8.6分;(2)(人)∴这500名学生对“八礼四仪”掌握情况优秀的人数为300人;(3)不同意平均数容易受极端值的影响,所以小明的测试成绩为8分,并不一定代表他的成绩在班级中等偏上,要想知道自己的成绩是否处于中等偏上,需要了解班内学生成绩的中位数.【题目点拨】本题考查加权平均数的计算,用样本估计总体以及平均数及中位数的意义,了解相关概念准确计算是本题的解题关键.20、(1)∠ACD=45°;(2)BC+AC=CD,见解析;(3)OP=.【分析】(1)由圆周角的定义可求∠ACB=90°,再由角平分线的定义得到∠ACD=45°;(2)连接CO延长与圆O交于点G,连接DG、BG,延长DG、CB交于点F;先证明△BGF是等腰直角三角形,得到BG=BF,AG=BF,再证明△CDF是等腰三角三角形,得到CF=CD,即可求得BC+AC=CD;(3)过点A作AM⊥ED,过点B作BN⊥ED交ED延长线与点N,连接BE;先证明Rt△AMD≌Rt△DNB(AAS),再证明△AED是等腰三角形,分别求得EN=,BN=,在Rt△EBN中,BE=,OP=BN=.【题目详解】解:(1)∵AB是直径,点C在圆上,∴∠ACB=90°,∵∠ACB的平分线CD与⊙O交于点D,∴∠ACD=45°;(2)BC+AC=CD,连接CO延长与圆O交于点G,连接DG、BG,延长DG、CB交于点F;∴∠CDG=∠CBG=90°,∵∠ACB=90°,∴AC∥BG,∴∠CGB=∠ACG,∴∠CGB=45°+∠DCG,∵∠CBF=90°+∠DCG,∴∠BGF=45°,∴△BGF是等腰直角三角形,∴BG=BF,∵△ACO≌△BGO(SAS),∴AG=BF,∵△CDF是等腰三角三角形,∴CF=CD,∴BC+AC=CD;(3)过点A作AM⊥ED,过点B作BN⊥ED交ED延长线与点N,连接BE;∵∠ACD=∠ABD=45°,∠ADB=90°,∴AD=BD,∵AB=5,∴BD=AD=,∵∠MAD=∠BDN,∴Rt△AMD≌Rt△DNB(AAS),∴AM=DN,MD=BN,∵ED=BD,∴△AED是等腰三角形,∵AE=3,∴AM=,DM=,∴EN=,BN=,在Rt△EBN中,BE=,∵P是AE的中点,O是AB的中点,∴OP=BN,∴OP=.【题目点拨】本题是一道关于圆的综合题目,考查了等腰三角形的性质、圆周角定义、角平分线、全等三角形的判定及性质,勾股定理等多个知识点,根据题目作出适合的辅助线是解此题的关键.21、(1)y=x2﹣4x;(2)A(,﹣);(3)①平行四边形,理由见解析;②A(1,﹣3)或A(3,﹣3).【分析】(1)由已知可得抛物线与x轴另一个交点(4,0),将(2,﹣4)、(4,0)、(0,0)代入y=ax2+bx+c即可求表达式;(2)由∠APO=90°,可知AP⊥PO,所以m﹣2=,即可求A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),可得CD∥OB,CD=CB,所以四边形OBCD是平行四边形;②四边形由OBCD是平行四边形,,所以12=4×(﹣n),即可求出A(1,﹣3)或A(3,﹣3).【题目详解】解:(1)∵图象经过原点,∴c=0,∵顶点为P(2,﹣4)∴抛物线与x轴另一个交点(4,0),将(2,﹣4)和(4,0)代入y=ax2+bx,∴a=1,b=﹣4,∴二次函数的解析式为y=x2﹣4x;(2)∵∠APO=90°,∴AP⊥PO,∵A(m,m2﹣4m),∴m﹣2=,∴m=,∴A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),∴CD∥OB,∵CD=4,OB=4,∴四边形OBCD是平行四边形;②∵四边形OBCD是平行四边形,,∴12=4×(﹣n),∴n=﹣3,∴A(1,﹣3)或A(3,﹣3).【题目点拨】本题考查了二次函数与几何综合问题,涉及二次函数求解析式、直角三角形、平行四边形等知识点,解题的关键是灵活运用上述知识点进行推导求解.22、32米【分析】设关于的对称点为,根据光线的反射可知,延长、相交于点,连接并延长交于点,先根据镜面反射的基本性质,得出,再运用相似三角形对应边成比例即可解答.【题目详解】设关于的对称点为,根据光线的反射可知,延长、相交于点,连接并延长交于点,由题意可知且、∴∴∴即:∴∴答:楼的高度为米.【题目点拨】本题考查了相似三角形的应用、镜面反射的基本性质,准确作出辅助线是关键.23、(1);(2)两次所抽取的卡片恰好都是轴对称图形的概率为.【分析】(1)先判断其中的中心对称图形,再根据概率公式求解即得答案;(2)先画出树状图得到所有可能的情况,再判断两次都是轴对称图形的情况,然后根据概率公式计算即可.【题目详解】解:(1)中心对称图形的卡片是A和D,所以从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为,故答案为;(2)轴对称图形的卡片是B、C、E.画树状图如下:由树状图知,共有20种等可能结果,其中两次所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年西方政治制度的反腐败新思路试题及答案
- 深入研究西方国家公共参与的机制试题及答案
- 计算机三级网络技术基础题目详解试题及答案
- 计算机二级MySQL数据备份试题及答案
- 嵌入式产品的用户反馈收集方法试题及答案
- 2025年信息系统项目管理师考试规划试题及答案
- 数据库服务和支持最佳实践试题及答案
- 公路制图技巧试题及答案
- 行政组织与社会网络的互动关系研究试题及答案
- 新型网络技术考试练习题及答案
- 2025年物联网工程师考试试题及答案
- 宣城郎溪开创控股集团有限公司下属子公司招聘笔试题库2025
- 2025年高尔夫教练职业资格考试试卷及答案
- 汽车挂靠合同终止协议书
- 抖音合作合同协议书
- 肥胖症诊疗指南(2024年版)解读
- 麦收消防安全培训课件
- 2024北京西城区六年级(下)期末数学试题及答案
- 公安保密知识培训
- 《科普技巧常识》课件
- 2025年中国全电脑横机市场现状分析及前景预测报告
评论
0/150
提交评论