2024届四川省成都实验外国语学校数学九上期末达标检测试题含解析_第1页
2024届四川省成都实验外国语学校数学九上期末达标检测试题含解析_第2页
2024届四川省成都实验外国语学校数学九上期末达标检测试题含解析_第3页
2024届四川省成都实验外国语学校数学九上期末达标检测试题含解析_第4页
2024届四川省成都实验外国语学校数学九上期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都实验外国语学校数学九上期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=35°,那么∠BAD等于()A.35° B.45° C.55° D.65°2.抛物线y=﹣2(x+1)2﹣3的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=3 D.直线x=﹣33.一元二次方程的两根之和为()A. B.2 C. D.34.图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是()A. B. C. D.5.下列事件中,是必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数为偶数B.三角形的内角和等于180°C.不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球D.抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”6.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码3536373839平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数7.下列图形中是中心对称图形又是轴对称图形的是()A. B. C. D.8.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为()A. B. C. D.9.在Rt△ABC中,∠C=90°,tanA=,则sinA的值为()A. B. C. D.10.在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是()A.30° B.45° C.60° D.90°11.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠112.为测量如图所示的斜坡垫的倾斜度,小明画出了斜坡垫的侧面示意图,测得的数据有:,则该斜坡垫的倾斜角的正弦值是()A. B. C. D.二、填空题(每题4分,共24分)13.方程的一次项系数是________.14.如图,一副含和角的三角板和拼合在一个平面上,边与重合,.当点从点出发沿方向滑动时,点同时从点出发沿射线方向滑动.当点从点滑动到点时,点运动的路径长为______.15.对于任意非零实数a、b,定义运算“”,使下列式子成立:,,,,…,则ab=.16.如图,的直径AB与弦CD相交于点,则______.17.如图,把直角尺的角的顶点落在上,两边分别交于三点,若的半径为.则劣弧的长为______.18.一元二次方程x2﹣4=0的解是._________三、解答题(共78分)19.(8分)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求△ABC的面积;(3)抛物线的对称轴上是否存在点M,使得△ABM是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.20.(8分)元旦期间,九年级某班六位同学进行跳圈游戏,具体过程如下:图1所示是一枚质地均匀的正方体骰子,骰子的六个面上的点数分别是1,1,3,4.5,6,如图1,正六边形ABCDEF的顶点处各有一个圈.跳圈游戏的规则为:游戏者每投掷一次骰子,假骰子向上的一面上的点数是几,就沿着正六边形的边逆时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就逆时针连续跳3个边长,落到圈D;若第二次掷得1.就从图D开始逆时针连续起跳1个边长,落到圈F…,设游戏者从圈A起跳(1)小明随机掷一次骰子,求落回到圈A的概率P1;(1)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈A的概率P1.21.(8分)已知关于x的一元二次方程.(1)求证:无论k取何值,方程总有两个实数根;(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为整数,求k的值.22.(10分)取什么值时,关于的方程有两个相等的实数根?求出这时方程的根.23.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.(10分)某班级元旦晚会上,有一个闯关游戏,在一个不透明的布袋中放入3个乒乓球,除颜色外其它都相同,它们的颜色分别是绿色、黄色和红色.搅均后从中随意地摸出一个乒乓球,记下颜色后放回,搅均后再从袋中随意地摸出一个乒乓球,如果两次摸出的球的颜色相同,即为过关.请用画树状图或列表法求过关的概率.25.(12分)化简求值:,其中26.一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据题意可知、,通过与互余即可求出的值.【题目详解】解:∵∴∵是的直径∴∴故选:C【题目点拨】本题考查了圆周角定理,同弧所对的圆周角相等、并且等于它所对的圆心角的一半,也考查了直径所对的圆周角为90度.2、B【分析】根据题目中抛物线的解析式,可以写出该抛物线的对称轴.【题目详解】解:∵抛物线y=﹣2(x+1)2﹣3,∴该抛物线的对称轴为直线x=﹣1,故选:B.【题目点拨】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).3、D【分析】直接利用根与系数的关系求得两根之和即可.【题目详解】设x1,x2是方程x2-1x-1=0的两根,则

x1+x2=1.

故选:D.【题目点拨】此题考查根与系数的关系,解题关键在于掌握运算公式.4、C【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【题目详解】A、B、D都是轴对称图形,而C不是轴对称图形.

故选C.【题目点拨】本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、B【分析】根据事件发生的可能性大小判断相应事件的类型.【题目详解】解:A、掷一枚质地均匀的骰子,向上一面的点数为偶数是随机事件;B、三角形的内角和等于180°是必然事件;C、不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球是随机事件;D、抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”是随机事件;故选:B.【题目点拨】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【题目详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【题目点拨】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7、A【分析】根据中心对称图形和轴对称图形的性质对各项进行判断即可.【题目详解】根据中心对称图形和轴对称图形的性质,只有下图符合故答案为:A.【题目点拨】本题考查了中心对称图形和轴对称图形,掌握中心对称图形和轴对称图形的定义和性质是解题的关键.8、D【解题分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【题目详解】解:绿球的概率:P==,故选:D.【题目点拨】本题考查概率相关概念,熟练运用概率公式计算是解题的关键.9、B【分析】由题意直接根据三角函数的定义进行分析即可求解.【题目详解】解:∵在Rt△ABC中,∠C=90°,tanA=,∴可以假设BC=k,AC=2k,∴AB=k,∴sinA==.故选:B.【题目点拨】本题考查同角三角函数的计算,解题本题的关键是明确sinA等于对边与斜边的比.10、C【解题分析】试题分析:根据特殊角的三角函数值可得:∠A=60°.11、C【题目详解】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.故选C【题目点拨】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12、A【分析】利用正弦值的概念,的正弦值=进行计算求解.【题目详解】解:∵∴在Rt△ABC中,故选:A.【题目点拨】本题考查锐角三角函数的概念,熟练掌握正弦值的概念,熟记的正弦值=是本题的解题关键.二、填空题(每题4分,共24分)13、-3【解题分析】对于一元二次方程的一般形式:,其中叫做二次项,叫做一次项,为常数项,进而直接得出答案.【题目详解】方程的一次项是,∴一次项系数是:故答案是:.【题目点拨】本题主要考查了一元二次方程的一般形式,正确得出一次项系数是解题关键.14、【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC=4cm,AB=8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,【题目详解】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm

如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED-CD=(12-6)cm

∴当点E从点A滑动到点C时,点D运动的路径长=2×(12-6)=(24-12)cm【题目点拨】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,确定点D的运动轨迹是本题的关键.15、【解题分析】试题分析:根据已知数字等式得出变化规律,即可得出答案:∵,,,,…,∴。16、【解题分析】分析:由已知条件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.详解:∵AB是的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴BC=,∴tan∠ABC=,又∵∠ADC=∠ABC,∴tan∠ADC=.故答案为:.点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.17、【分析】连接OB、OC,如图,先根据圆周角定理求出∠BOC的度数,再根据弧长公式计算即可.【题目详解】解:连接OB、OC,如图,∵∠A=45°,∴∠BOC=90°,∴劣弧的长=.故答案为:.【题目点拨】本题考查了圆周角定理和弧长公式的计算,属于基础题型,熟练掌握基本知识是解题关键.18、x=±1【解题分析】移项得x1=4,∴x=±1.故答案是:x=±1.三、解答题(共78分)19、(1)y=x2﹣x﹣4;(2)10;(3)存在,M1(,11),M2(,﹣),M3(,﹣2),M4(,﹣﹣2).【分析】(1)将点A,B代入y=ax2+bx﹣4即可求出抛物线解析式;(2)在抛物线y=x2﹣x﹣4中,求出点C的坐标,推出BC∥x轴,即可由三角形的面积公式求出△ABC的面积;(3)求出抛物线y=x2﹣x﹣4的对称轴,然后设点M(,m),分别使∠AMB=90°,∠ABM=90°,∠AMB=90°三种情况进行讨论,由相似三角形和勾股定理即可求出点M的坐标.【题目详解】解:(1)将点A(﹣3,0),B(5,﹣4)代入y=ax2+bx﹣4,得,解得,,∴抛物线的解析式为:y=x2﹣x﹣4;(2)在抛物线y=x2﹣x﹣4中,当x=0时,y=﹣4,∴C(0,﹣4),∵B(5,﹣4),∴BC∥x轴,∴S△ABC=BC•OC=×5×4=10,∴△ABC的面积为10;(3)存在,理由如下:在抛物线y=x2﹣x﹣4中,对称轴为:,设点M(,m),①如图1,当∠M1AB=90°时,设x轴与对称轴交于点H,过点B作BN⊥x轴于点N,则HM1=m,AH=,AN=8,BN=4,∵∠AM1H+∠M1AN=90°,∠M1AN+∠BAN=90°,∴∠M1AH=∠BAN,又∵∠AHM1=∠BNA=90°,∴△AHM1∽△BNA,∴,即,解得,m=11,∴M1(,11);②如图2,当∠ABM2=90°时,设x轴与对称轴交于点H,BC与对称轴交于点N,由抛物线的对称性可知,对称轴垂直平分BC,∴M2C=M2B,∴∠BM2N=∠AM2N,又∵∠AHM2=∠BNM2=90°,∴△AHM2∽△BNM2,∴,∵HM2=﹣m,AH=,BN=,M2N=﹣4﹣m,∴,解得,,∴M2(,﹣);③如图3,当∠AMB=90°时,设x轴与对称轴交于点H,BC与对称轴交于点N,则AM2+BM2=AB2,∵AM2=AH2+MH2,BM2=BN2+MN2,∴AH2+MH2+BN2+MN2=AB2,∵HM=﹣m,AH=,BN=,MN=﹣4﹣m,即,解得,m1=﹣2,m2=﹣﹣2,∴M3(,﹣2),M4(,﹣﹣2);综上所述,存在点M的坐标,其坐标为M1(,11),M2(,﹣),M3(,﹣2),M4(,﹣﹣2).【题目点拨】本题考查了待定系数法求解析式,三角形的面积,直角三角形的存在性,相似三角形的判定与性质等,解题关键是注意分类讨论思想在解题中的运用.20、(1);(1)【分析】(1)直接利用概率公式求解;

(1)先画树状图得到36种等可能的结果,再找出两数的和为6的倍数的结果数,然后根据概率公式求解.【题目详解】(1)共有6种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P1=;(1)画树状图为:∵共有36种等可能的结果,最后落回到圈A的有(1,5),(1,4),(3,3),(4,1),(5,1),(6,6),∴小亮最后落回到圈A的概率P1==.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.21、(1)、证明过程见解析;(2)、±1.【分析】(1)、首先得出方程的根的判别式,然后利用配方法得出非负数,从而得出答案;(2)、根据公式法得出方程的解,然后根据解为整数得出k的值.【题目详解】(1)、△=(3k+1)2-4k×3=(3k-1)2∵(3k-1)2≥0∴△≥0,∴无论k取何值,方程总有两个实数根;(2)、kx2+(3k+1)x+3=0(k≠0)解得:x=,x1=,x2=3,所以二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标分别为和3,根据题意得为整数,所以整数k为±1.考点:二次函数的性质22、k=2或10时,当k=2时,x1=x2=,当k=10时,x1=x2=【分析】根据题意,得判别式△=[-(k+2)]2-4×4×(k-1)=0,解此一元二次方程即可求得k的值;然后代入k,利用直接开平方法,即可求得这时方程的根.【题目详解】解:∵关于x的方程4x2-(k+2)x+k-1=0有两个相等的实数根,∴△=[-(k+2)]2-4×4×(k-1)=k2-12k+20=0,解得:k1=2,k2=10∴k=2或10时,关于x的方程4x2-(k+2)x+k-1=0有两个相等的实数根.当k=2时,原方程为:4x2-4x+1=0,即(2x-1)2=0,解得:x1=x2=;当k=10时,原方程为:4x2-12x+9=0,即(2x-3)2=0,解得:x1=x2=;【题目点拨】此题考查了一元二次方程根的判别式与一元二次方程的解法.此题难度不大,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23、(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【分析】(1)根据销售额=销售量×销售价单x,列出函数关系式.(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.(3)把y=150代入(2)的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论