2024届河南省开封市兰考县等五县联考高一上数学期末达标检测模拟试题含解析_第1页
2024届河南省开封市兰考县等五县联考高一上数学期末达标检测模拟试题含解析_第2页
2024届河南省开封市兰考县等五县联考高一上数学期末达标检测模拟试题含解析_第3页
2024届河南省开封市兰考县等五县联考高一上数学期末达标检测模拟试题含解析_第4页
2024届河南省开封市兰考县等五县联考高一上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省开封市兰考县等五县联考高一上数学期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的周期扩大到原来的2倍,再将函数图象左移,得到图象对应解析式是()A. B.C. D.2.函数的定义域是()A. B.C.R D.3.函数的零点所在区间是A. B.C. D.4.已知函数y=(12)x的图象与函数y=logax(a>0,A.[ 2C.[ 85.已知x,y满足,求的最小值为()A.2 B.C.8 D.6.已知角是第四象限角,且满足,则()A. B.C. D.7.设函数,则下列结论不正确的是()A.函数的值域是;B.点是函数的图像的一个对称中心;C.直线是函数的图像的一条对称轴;D.将函数的图像向右平移个单位长度后,所得图像对应的函数是偶函数8.是定义在上的偶函数,在上单调递增,,,则下列不等式成立的是()A. B.C. D.9.圆:与圆:的位置关系为()A.相交 B.相离C.外切 D.内切10.在中,,,则的值为A. B.C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.若将函数的图像向左平移个单位后所得图像关于轴对称,则的最小值为___________.12.在中,角、、所对的边为、、,若,,,则角________13.已知向量,,,则=_____.14.已知函数是定义在的奇函数,则实数b的值为_________;若函数,如果对于,,使得,则实数a的取值范围是__________15.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=____________.16.若,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.18.已知直线及点.(1)证明直线过某定点,并求该定点的坐标;(2)当点到直线的距离最大时,求直线的方程.19.已知函数(,且).(1)求函数的定义域;(2)是否存在实数a,使函数在区间上单调递减,并且最大值为1?若存在,求出a的值;若不存在,请说明理由.20.如图,是半径为的半圆,为直径,点为的中点,点和点为线段的三等分点,平面外一点满足平面,=.(1)证明:;(2)求点到平面的距离.21.已知(1)若函数和函数的图象关于原点对称,求函数的解析式(2)若在上是增函数,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】直接利用函数图象的与平移变换求出函数图象对应解析式【题目详解】解:将函数y=5sin(﹣3x)的周期扩大为原来的2倍,得到函数y=5sin(x),再将函数图象左移,得到函数y=5sin[(x)]=5sin()=5sin()故选D【题目点拨】本题考查函数y=Asin(ωx+φ)的图象变换,属于基础题.2、A【解题分析】显然这个问题需要求交集.【题目详解】对于:,;对于:,;故答案为:A.3、C【解题分析】根据函数零点存在性定理进行判断即可【题目详解】∵,,∴,∴函数在区间(2,3)上存在零点故选C【题目点拨】求解函数零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.值得说明的是,零点存在性定理是充分条件,而并非是必要条件4、D【解题分析】由已知中两函数的图象交于点P( 由指数函数的性质可知,若x0≥2,则0<y由于x0≥2,所以a>1且4a点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于a的不等式是解答的关键,试题比较基础,属于基础题.5、C【解题分析】利用两点间的距离公式结合点到直线的距离公式即可求解.【题目详解】解:表示点与直线上的点的距离的平方所以的最小值为点到直线的距离的平方所以最小值为:故选:C.6、A【解题分析】直接利用三角函数的诱导公式以及同角三角函数基本关系式化简求解即可【题目详解】由,得,即,∵角是第四象限角,∴,∴故选:A7、B【解题分析】根据余弦函数的性质一一判断即可;【题目详解】解:因为,,所以,即函数的值域是,故A正确;因为,所以函数关于对称,故B错误;因为,所以函数关于直线对称,故C正确;将函数的图像向右平移个单位长度得到为偶函数,故D正确;故选:B8、C【解题分析】根据对数的运算法则,得到,结合偶函数的定义以及对数函数的单调性,得到自变量的大小,根据函数在上的单调性,得到函数值的大小,得到选项.【题目详解】,而,因为是定义在上的偶函数,且在上单调递增,所以,所以,故选:C.9、A【解题分析】根据圆心距以及圆的半径确定正确选项.【题目详解】圆:的圆心为,半径为.圆:的圆心为,半径为.,,所以两圆相交.故选:A10、A【解题分析】如图,,又,∴,故.选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用辅助角公式将函数化简,再根据三角函数的平移变换及余弦函数的性质计算可得;【题目详解】解:因,将的图像向左平移个单位,得到,又关于轴对称,所以,,所以,所以当时取最小值;故答案为:12、.【解题分析】利用余弦定理求出的值,结合角的取值范围得出角的值.【题目详解】由余弦定理得,,,故答案为.【题目点拨】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.13、【解题分析】先根据向量的减法运算求得,再根据向量垂直的坐标表示,可得关于的方程,解方程即可求得的值.【题目详解】因为向量,,所以则即解得故答案为:【题目点拨】本题考查了向量垂直的坐标关系,属于基础题.14、①.0②.【解题分析】由,可得,设在的值域为,在上的值域为,根据题意转化为,根据函数的单调性求得函数和的值域,结合集合的运算,列出不等式组,即可求解.【题目详解】由函数是定义在的奇函数,可得,即,经检验,b=0成立,设在值域为,在上的值域为,对于,,使得,等价于,又由为奇函数,可得,当时,,,所以在的值域为,因为在上单调递增,在上单调递减,可得的最小值为,最大值为,所以函数的值域为,则,解得,即实数的取值范围为.故答案为:;.15、【解题分析】由f(x+1)为奇函数,f(x+2)为偶函数,可得,,再结合已知的解析式可得,然后结合已知可求出,从而可得当时,,进而是结合前面的式子可求得答案【题目详解】因为f(x+1)为奇函数,所以的图象关于点对称,所以,且因为f(x+2)为偶函数,所以的图象关于直线对称,,所以,即,所以,即,当x∈[1,2]时,f(x)=ax2+b,则,因为,所以,得,因为,所以,所以当时,,所以,故答案为:16、1【解题分析】由已知结合两角和的正切求解【题目详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【题目点拨】本题考查两角和的正切公式的应用,是基础的计算题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、解:(1)y(2)ymax=1225,ymin=600【解题分析】解:(Ⅰ)=(Ⅱ)当0≤t<10时,y的取值范围是[1200,1225],在t=5时,y取得最大值为1225;当10≤t≤20时,y的取值范围是[600,1200],在t=20时,y取得最小值为600(答)总之,第5天,日销售额y取得最大为1225元;第20天,日销售额y取得最小为600元18、(1)证明见解析,定点坐标为;(2)15x+24y+2=0.【解题分析】(1)直线l的方程可化为a(2x+y+1)+b(-x+y-1)=0,由,即可解得定点;(2)由(1)知直线l恒过定点A,当直线l垂直于直线PA时,点P到直线l的距离最大,利用点斜式求直线方程即可.试题解析:(1)证明:直线l的方程可化为a(2x+y+1)+b(-x+y-1)=0,由,得,所以直线l恒过定点.(2)由(1)知直线l恒过定点A,当直线l垂直于直线PA时,点P到直线l的距离最大.又直线PA的斜率,所以直线l的斜率kl=-.故直线l的方程为,即15x+24y+2=0.19、(1)(2)【解题分析】(1)根据对数型函数定义的求法简单计算即可.(2)利用复合函数的单调性的判断可知,然后依据题意可得进行计算即可.【小问1详解】由题意可得,即,因为,所以解得.故的定义域为.【小问2详解】假设存在实数,使函数在区间上单调递减,并且最大值为1.设函数,由,得,所以在区间上减函数且恒成立,因为在区间上单调递减,所以且,即.又因为在区间上的最大值为1,所以,整理得,解得.因为,所以,所以存在实数,使函数在区间上单调递减,并且最大值为120、(1)证明见解析(2)【解题分析】本题主要考查直线与平面、点到面的距离,考查空间想象能力、推理论证能力(1)证明:∵点E为的中点,且为直径∴,且∴∵FC∩AC=C∴BE⊥平面FBD∵FD∈平面FBD∴EB⊥FD(2)解:∵,且∴又∵∴∴∵∴∵∴∴∴点到平面的距离点评:立体几何问题是高考中的热点问题之一,从近几年高考来看,立体几何的考查的分值基本是20分左右,其中小题一两题,解答题21、(1)(2)【解题分析】(1)化简f(x)解析式,设函数的图象上任一点,,它关于原点的对称点为,其中,,利用点在函数的图象上,将其坐标代入的表达式即可得g(x)解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论