




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省定西市陇西二中高一数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“幂函数在上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知为第二象限角,则的值是()A.3 B.C.1 D.3.设函数对的一切实数均有,则等于A.2016 B.-2016C.-2017 D.20174.若,,,则的大小关系为()A. B.C. D.5.已知两个非零向量,满足,则下面结论正确的是A. B.C. D.6.下列说法正确的是()A.向量与共线,与共线,则与也共线B.任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点C.向量与不共线,则与都是非零向量D.有相同起点的两个非零向量不平行7.已知,且点在线段的延长线上,,则点的坐标为()A. B.C. D.8.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A.-18 B.-12C.-8 D.-69.将一个直角三角形绕其一直角边所在直线旋转一周,所得的几何体为()A.一个圆台 B.两个圆锥C.一个圆柱 D.一个圆锥10.已知向量,其中,则的最小值为()A.1 B.2C. D.3二、填空题:本大题共6小题,每小题5分,共30分。11.若,,则a、b的大小关系是______.(用“<”连接)12.若在上恒成立,则k的取值范围是______.13.已知半径为3的扇形面积为,则这个扇形的圆心角为________14.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______15.在平面直角坐标系xOy中,角α与角β均以x轴的非负半轴为始边,它们的终边关于坐标原点对称.若sinα=116.已知,则___________.(用含a的代数式表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的内角所对的边分别为,(1)求的值;(2)若,求面积18.已知函数(为常数),在时取得最大值2.(1)求的解析式;(2)求函数在上单调区间和最小值.19.设函数.(1)当时,若对于,有恒成立,求取值范围;(2)已知,若对于一切实数恒成立,并且存在,使得成立,求的最小值.20.在①;②关于x的不等式的解集是这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分(1)已知______,求关于的不等式的解集;(2)在(1)的条件下,若非空集合,,求实数的取值范围21.已知为的三个内角,向量与向量共线,且角为锐角.(1)求角的大小;(2)求函数的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由幂函数的概念,即可求出或,再根据或均满足在上单调递增以及充分条件、必要条件的概念,即可得到结果.【题目详解】若为幂函数,则,解得或,又或都满足在上单调递增故“”是“幂函数在上单调递增”的充分不必要条件故选:A.2、C【解题分析】由为第二象限角,可得,再结合,化简即可.【题目详解】由题意,,因为为第二象限角,所以,所以.故选:C.3、B【解题分析】将换成再构造一个等式,然后消去,得到的解析式,最后可求得【题目详解】①②①②得,故选:【题目点拨】本题考查求解析式的一种特殊方法:方程组法.如已知,求,则由已知得,把和作为未知数,列出方程组可解出.如已知也可以用这种方法求解析式4、A【解题分析】由指数函数的单调性可知,由对数函数的单调性可知,化简,进而比较大小即可【题目详解】因为在上是增函数,所以;在上是增函数,所以;,所以,故选:A【题目点拨】本题考查指数、对数比较大小问题,考查指数函数、对数函数的单调性的应用5、B【解题分析】,所以,故选B考点:平面向量的垂直6、C【解题分析】根据共线向量(即平行向量)定义即可求解.【题目详解】解:对于A:可能是零向量,故选项A错误;对于B:两个向量可能在同一条直线上,故选项B错误;对于C:因为与任何向量都是共线向量,所以选项C正确;对于D:平行向量可能在同一条直线上,故选项D错误故选:C.7、C【解题分析】设,根据题意得出,由建立方程组求解即可.【题目详解】设,因为,所以即故选:C【题目点拨】本题主要考查了由向量共线求参数,属于基础题.8、D【解题分析】首先根据题意得到,再根据的奇偶性求解即可.【题目详解】由题知:,所以当时,,又因为函数是奇函数,所以.故选:D9、D【解题分析】依题意可知,这是一个圆锥.10、A【解题分析】利用向量坐标求模得方法,用表示,然后利用三角函数分析最小值【题目详解】因为,所以,因为,所以,故的最小值为.故选A【题目点拨】本题将三角函数与向量综合考察,利用三角函数得有界性,求模长得最值二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】容易看出,<0,>0,从而可得出a,b的大小关系【题目详解】,>0,,∴a<b故答案为a<b【题目点拨】本题主要考查对数函数的单调性,考查对数函数和指数函数的值域.意在考查学生对这些知识的理解掌握水平和分析推理能力.12、【解题分析】首先参变分离得到在上恒成立,接着分段求出函数的最小值,最后给出k的取值范围即可.【题目详解】因为在上恒成立,所以在上恒成立,当时,,所以,所以,所以;当时,,所以,所以,所以;综上:k的取值范围为.故答案为:.【题目点拨】本题是含参数的不等式恒成立问题,此类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.13、【解题分析】由扇形的面积公式直接求解.【题目详解】由扇形面积公式,可得圆心角,故答案为:.【题目点拨】(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷(2)求扇形面积的最值应从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.14、①.②.【解题分析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.【题目详解】因为,故函数图象恒过的定点坐标为;由题意可知,对任意的,,则,因为函数在上单调递增,且当时,,所以,.当时,在上为减函数,函数为增函数,所以,函数、在上均为减函数,此时,函数在上为减函数,合乎题意;当且时,,不合乎题意;当时,在上为增函数,函数为增函数,函数、在上均为增函数,此时,函数在上为增函数,不合乎题意.综上所述,若在上单调递减,.故答案为:;.15、-14【解题分析】根据题意,利用同角三角函数的基本关系,再由诱导公式,可得答案.【题目详解】∵角α与角β的终边关于坐标原点对称,所以β=α+由诱导公式可得:sinβ=-故答案为:-16、【解题分析】利用换底公式化简,根据对数的运算法则求解即可【题目详解】因为,所以故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)由正弦定理求解即可;(2)由余弦定理求得则面积可求【题目详解】(1)由正弦定理得故;(2),由余弦定理,,解得因此,【题目点拨】本题考查正余弦定理解三角形,考查面积公式,熟记公式准确计算是关键,是基础题18、(1);(2)的单调增区间为,单调减区间为,.【解题分析】(1)根据对称轴方程为,及最大值为可列出关于的方程组,解方程组可得的值,从而可得结果;(2)根据(1)的结论可知,开口向上的抛物线对称轴在内,结合二次函数的图象可得的单调增区间为,单调减区间为.【题目详解】(1)由题意知,∴,∴.(2)∵,∴当时,的单调增区间为,单调减区间为,又,∴最小值为.19、(1)(2)【解题分析】(1)据题意知,把不等式的恒成立转化为恒成立,设,则,根据二次函数的性质,求得函数的最大致,即可求解.(2)由题意,根据二次函数的性质,求得,进而利用基本不等式,即可求解.【题目详解】(1)据题意知,对于,有恒成立,即恒成立,因此,设,所以,函数在区间上是单调递减的,,(2)由对于一切实数恒成立,可得,由存在,使得成立可得,,,当且仅当时等号成立,【题目点拨】本题主要考查了恒成立问题的求解,以及基本不等式求解最值问题,其中解答中掌握利用分离参数法是求解恒成立问题的重要方法,再合理利用二次函数的性质,合理利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.20、(1)条件选择见解析,或(2)【解题分析】(1)若选①,分和,求得a,再利用一元二次不等式的解法求解;若选②,根据不等式的解集为,求得a,b,再利用一元二次不等式的解法求解;(2)由,得到求解;【小问1详解】解:若选①,若,解得,不符合条件若,解得,则符合条件将代入不等式并整理得,解得或,故或若选②,因为不等式的解集为,所以,解得将代入不等式整理得,解得或故或【小问2详解】∵,∴,又∵,∴或,∴或,∴21、(1);(2).【解题分析】(1)根据平行向量的坐标关系即可得到(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,这样即可解出tan2A,结合A为锐角,即可求出A;(2)由B+C便得C,从而得到,利用二倍角的余弦公式及两角差的正余弦公式即可化简原函数y=1+sin(B),由前面知0,从而可得到B的范围,结合正弦函数的图象即可得到的范围,即可得出原函数的值域【题目详解】(1)由m∥n,得(2﹣2sinA)(1+si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年交通设备制造业数字化转型升级政策环境分析报告
- 2025年工业互联网平台传感器网络自组网技术在航空航天领域的应用分析
- 2025年分布式能源系统生物质能源应用中的能源互联网发展优化报告
- 2025年乡村振兴背景下职业技能培训的可持续发展策略报告
- 2025年CCS项目在能源领域应用的经济效益与投资决策支持研究报告
- 2025年医疗美容消费者心理特点与服务质量优化路径报告
- 轻工行业25W22:关税博弈继续浆价震荡分化
- 施工净化车间管理制度
- 固体废物收集点管理制度
- 所属分公司财务管理制度
- 2025年江西省中考数学试卷真题(含标准答案)
- 保洁学校管理制度
- 2025春季学期国开电大本科《人文英语4》一平台机考真题及答案(第六套)
- 2025年河北省中考麒麟卷生物(二)及答案
- 2025年中国铁路济南局集团招聘笔试冲刺题(带答案解析)
- 2025年全国高考一卷英语真题(解析版)
- 湖南省长沙市2025年七年级下学期语文期末试卷(附参考答案)
- 农机停放场管理制度
- 2025年浙江省嘉兴市南湖区中考二模英语试题(含答案无听力原文及音频)
- T/SHPTA 071.1-2023高压电缆附件用橡胶材料第1部分:绝缘橡胶材料
- 生产基层管理培训课程
评论
0/150
提交评论