浙江省宁波市慈溪市2024届数学高一上期末监测模拟试题含解析_第1页
浙江省宁波市慈溪市2024届数学高一上期末监测模拟试题含解析_第2页
浙江省宁波市慈溪市2024届数学高一上期末监测模拟试题含解析_第3页
浙江省宁波市慈溪市2024届数学高一上期末监测模拟试题含解析_第4页
浙江省宁波市慈溪市2024届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市慈溪市2024届数学高一上期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f(x)=|lnx|-1,g(x)=-x2+2x+3,用min{m,n}表示m,n中的最小值.设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为()A.1 B.2C.3 D.42.已知圆C:x2+y2+2x=0与过点A(1,0)的直线l有公共点,则直线l斜率k的取值范围是()A. B.C. D.3.如果,那么()A. B.C. D.4.下列所给出的函数中,是幂函数的是A. B.C. D.5.已知是偶函数,且在上是减函数,又,则的解集为()A. B.C. D.6.若方程有两个不相等的实数根,则实根的取值范围是()A. B.C. D.7.若,则的值为()A. B.C. D.8.已知幂函数f(x)=xa的图象经过点P(-2,4),则下列不等关系正确的是()A. B.C. D.9.设为大于1的正数,且,则,,中最小的是A. B.C. D.三个数相等10.已知函数,则()A.5 B.2C.0 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的图像恒过定点A,若点A在一次函数的图像上,其中,则的最小值是__________12.已知函数①当a=1时,函数的值域是___________;②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________13.计算:__________14.若,记,,,则P、Q、R的大小关系为______15.函数定义域为________.(用区间表示)16.已知,且,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.直线过定点,交、正半轴于、两点,其中为坐标原点.(Ⅰ)当的倾斜角为时,斜边的中点为,求;(Ⅱ)记直线在、轴上的截距分别为,其中,求的最小值.18.2021年12月9日15时40分,神舟十三号“天宫课堂”第一课开讲!受“天宫课堂”的激励与鼓舞,某同学对航天知识产生了浓厚的兴趣.通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,火箭是目前唯一能使物体达到宇宙速度,克服或摆脱地球引力,进入宇宙空间的运载工具.早在1903年齐奥尔科夫斯基就推导出单级火箭的最大理想速度公式:,被称为齐奥尔科夫斯基公式,其中为发动机的喷射速度,和分别是火箭的初始质量和发动机熄火(推进剂用完)时的质量.被称为火箭的质量比(1)某单级火箭的初始质量为160吨,发动机的喷射速度为2千米/秒,发动机熄火时的质量为40吨,求该单级火箭的最大理想速度(保留2位有效数字);(2)根据现在的科学水平,通常单级火箭的质量比不超过10.如果某单级火箭的发动机的喷射速度为2千米/秒,请判断该单级火箭的最大理想速度能否超过第一宇宙速度千米/秒,并说明理由.(参考数据:,无理数)19.函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当x∈[-2,2]时,求f(x)的值域.20.已知函数,.(1)若函数在上是减函数,求实数的取值范围;(2)是否存在整数,使得的解集恰好是,若存在,求出的值;若不存在,说明理由.21.某纪念章从某年某月某日起开始上市,通过市场调查,得到该纪念章每枚的市场价(单位:元)与上市时间(单位:天)的数据如下:上市时间天市场价元(1)根据上表数计,从下列函数中选取一个恰当的函数描述该纪念章的市场价与上市时间的变化关系并说明理由:①;②;③;④;(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】画图可知四个零点分别为-1和3,和e,但注意到f(x)的定义域为x>0,故选C.2、B【解题分析】利用点到直线的距离公式和直线和圆的位置关系直接求解【题目详解】根据题意得,圆心(﹣1,0),r=1,设直线方程为y﹣0=k(x﹣1),即kx﹣y﹣k=0∴圆心到直线的距离d1,解得k故选B【题目点拨】本题考查直线和圆的位置关系,点到直线的距离公式,属于基础题3、D【解题分析】利用对数函数的单调性,即可容易求得结果.【题目详解】因为是单调减函数,故等价于故选:D【题目点拨】本题考查利用对数函数的单调性解不等式,属基础题.4、B【解题分析】根据幂函数的定义,直接判定选项的正误,推出正确结论【题目详解】幂函数的定义规定;y=xa(a为常数)为幂函数,所以选项中A,C,D不正确;B正确;故选B【题目点拨】本题考查幂函数的定义,考查判断推理能力,基本知识掌握情况,是基础题5、B【解题分析】根据题意推得函数在上是增函数,结合,确定函数值的正负情况,进而求得答案.【题目详解】是偶函数,且在上是减函数,又,则,且在上是增函数,故时,,时,,故的解集是,故选:B.6、B【解题分析】方程有两个不相等的实数根,转化为有两个不等根,根据图像得到只需要故答案为B.7、D【解题分析】,故选D.8、A【解题分析】根据幂函数的图像经过点,可得函数解析式,然后利用函数单调性即可比较得出大小关系【题目详解】因为幂函数的图像经过点,所以,解得,所以函数解析式为:,易得为偶函数且在单调递减,在单调递增A:,正确;B:,错误;C:,错误;D:,错误故选A【题目点拨】本题考查利用待定系数法求解函数解析式,函数奇偶性和单调性的关系:奇函数在对应区间的函数单调性相同;偶函数在对应区间的函数单调性相反9、C【解题分析】令,则,所以,,对以上三式两边同时乘方,则,,,显然最小,故选C.10、C【解题分析】由分段函数,选择计算【题目详解】由题意可得.故选:C.【题目点拨】本题考查分段函数的求值,属于简单题二、填空题:本大题共6小题,每小题5分,共30分。11、8【解题分析】可得定点,代入一次函数得,利用展开由基本不等式求解.【题目详解】由可得当时,,故,点A在一次函数的图像上,,即,,,当且仅当,即时等号成立,故的最小值是8.故答案为:8.【题目点拨】本题考查基本不等式的应用,解题的关键是得出定点A,代入一次函数得出,利用“1”的妙用求解.12、①.(-∞,1]②.(-1,1]【解题分析】①分段求值域,再求并集可得的值域;②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围【题目详解】①当a=1时,即当x≤1时,,当x>1时,,综上所述当a=1时,函数的值域是,②由无解,故=在上与直线只有一个公共点,则有一个零点,即实数的取值范围是.故答案为:;.13、【解题分析】.故答案为.点睛:(1)任何非零实数的零次幂等于1;(2)当,则;(3).14、【解题分析】利用平方差公式和同角三角函数的平方关系可得P、R的关系,然后作差,因式分解,结合已知可判断P、Q的大小关系.【题目详解】又因为,所以所以,即所以P、Q、R的大小关系为.故答案为:15、【解题分析】由对数真数大于0,偶次根式被开方式大于等于0,列出不等式组求解即可得答案.【题目详解】解:由,得,所以函数的定义域为,故答案为:.16、【解题分析】根据题意,可知,结合三角函数的同角基本关系,可求出和再根据,利用两角差的余弦公式,即可求出结果.【题目详解】因为,所以,因为,所以,又,所以,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)9.【解题分析】(Ⅰ)首先求得直线方程与坐标轴的交点,然后求解的值即可;(Ⅱ)由题意结合截距式方程和均值不等式的结论求解的最小值即可.【题目详解】(Ⅰ),令令,.(Ⅱ)设,则,,当时,的最小值.【题目点拨】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误18、(1)千米/秒;(2)该单级火箭最大理想速度不可以超过第一宇宙速度千米/秒,理由见解析.【解题分析】(1)由题可知,,,代入即求;(2)利用条件可求,即得.【小问1详解】,,,该单级火箭的最大理想速度为千米/秒.【小问2详解】,,,,,.该单级火箭最大理想速度不可以超过第一宇宙速度千米/秒.19、(1);(2).【解题分析】(1)由最大值求出,由周期求出,由求出,进而求得的解析式;(2)由的范围求得的范围,从而得到的范围,进而求得的值域.【题目详解】(1)由图象可知,,,由可得,又,所以,所以.(2)当时,,所以,故的值域为.20、(1)(2)答案见解析【解题分析】(1)讨论和时实数的取值范围,再结合的范围与函数的对称轴讨论使得在上是减函数的范围即可;(2)假设存在整数,使得的解集恰好是.则,由,解出整数,再代入不等式检验即可小问1详解】解:令,则.当,即时,恒成立,所以.因为在上是减函数,所以,解得,所以.由,解得或.当时,的图象对称轴,且方程的两根均为正,此时在为减函数,所以符合条件.当时,的图象对称轴,且方程的根为一正一负,要使在单调递减,则,解得.综上可知,实数的取值范围为【小问2详解】解:假设存在整数,使的解集恰好是,则①若函数在上单调递增,则,且,即作差得到,代回得到:,即,由于均为整数,故,,或,,,经检验均不满足要求;②若函数在上单调递减,则,且,即作差得到,代回得到:,即,由于均为整数,故,,或,,,经检验均不满足要求;③若函数在上不单调,则,且,即作差得到,代回得到:,即,由于均为整数,故,,或,,,经检验均满足要求;综上,符合要求的整数是或【题目点拨】关键点点睛:本题第一问解题的关键在于先根据判别式求出的取值范围,再结合范围和二次函数的性质讨论求解;第二问解题的关键在于分类讨论,将问题转化为函数在上单调递增、单调递减、不单调三种情况求解即可.21、(1)②;(2)上市天,最低价元【解题分析】(1)根据所给的四个函数的单调性,结合表中数据所表示的变化特征进行选择即可;(2)根据表中数据代入所选函数的解析式,用待定系数法求出解析式,最后利用函数的单调性求出纪念章市场价最低时的上市天数及最低的价格.【题目详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论