




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
/专题07数轴上动点相距问题1.如图,已知数轴上的点A、B对应的数分别是-5和1.(1)若P到点A、B的距离相等,求点P对应的数;(2)动点P从点A出发,以2个长度单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由;(3)若动点P从点A出发向点B运动,同时,动点Q从点B出发向点A运动,经过2秒相遇;若动点P从点A出发向点B运动,同时,动点Q从点B出发与点P同向运动,经过6秒相遇,试求P点与Q点的运动速度(长度单位/秒)【答案】(1);(2)存在;2或6;(3)2单位长度/秒;1单位长度/秒【解析】【分析】(1)设点P对应的数为x,表示出BP与PA,根据BP=PA求出x的值,即可确定出点P对应的数;(2)表示出点P对应的数,进而表示出PA与PB,根据PA=2PB求出t的值即可;(3)设P点的运动速度m单位长度/秒,Q点的运动速度n单位长度/秒,根据题意列出关于、的二元一次方程组求解即可得出答案.(1)点A、B对应的数分别是-5和1,设点P对应的数为x,则,,∵,∴,解得:,∴点P对应的数为-2;(2)P对应的数为,∴,,∵,∴,当时,,当时,,答:当或6时,恰好使得P到点A的距离是点P到点B的距离的2倍;(3)设P点的运动速度m单位长度/秒,Q点的运动速度n单位长度/秒,根据题意得,,解得:,答:P点的运动速度2单位长度/秒,Q点的运动速度1单位长度/秒.【点睛】本题考查数轴上的点表示的数及两点间的距离、一元一次方程的应用,二元一次方程组的应用等知识,根据题中描述找到等量关系式是解题的关键.2.如图,数轴上的点O和A分别表示0和10,点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(0≤t≤10).(1)线段BA的长度为;(2)当t=3时,点P所表示的数是;(3)求动点P所表示的数(用含t的代数式表示);(4)在运动过程中,当PB=2时,求运动时间t.【答案】(1)5;(2)6;(3)当0≤t≤5时,动点P所表示的数是2t,当5<t≤10时,动点P所表示的数是20﹣2t;(4)1.5或3.5或6.5或8.5.【解析】【分析】(1)根据B是线段OA的中点,即可得到结论;(2)根据已知条件即可得到结论;(3)分两种情况讨论:①当0≤t≤5时,②当5<t≤10时,即可得到结论;(4)分两种情况讨论:①当0≤t≤5时,②当5<t≤10时,根据线段的和差即可得到结论.【详解】(1)∵B是线段OA的中点,∴BAOA=5.故答案为5;(2)当t=3时,点P所表示的数是2×3=6.故答案为6;(3)分两种情况讨论:①当0≤t≤5时,动点P所表示的数是2t;②当5<t≤10时,动点P所表示的数是20﹣2t;(4)①当0≤t≤5时,动点P所表示的数是2t.∵PB=2,∴|2t﹣5|=2,∴2t﹣5=2,或2t﹣5=﹣2,解得:t=3.5,或t=1.5;②当5<t≤10时,动点P所表示的数是20﹣2t.∵PB=2,∴|20﹣2t﹣5|=2,∴20﹣2t﹣5=2,或20﹣2t﹣5=﹣2,解得:t=6.5,或t=8.5.综上所述:所求t的值为1.5或3.5或6.5或8.5.【点睛】本题考查了一元一次方程的应用以及数轴上点的位置关系,根据P点位置的不同得出等式方程求出是解题的关键.3.已知,在数轴上对应的数分别用,表示,且点距离原点10个单位长度,且位于原点左侧,将点先向右平移35个单位长度,再向左平移5个单位长度,得到点,是数轴上的一个动点.(1)在数轴上标出、的位置,并求出、之间的距离;(2)已知线段上有点且,当数轴上有点满足时,求点对应的数;(3)动点从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点能移动到与或重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?【答案】(1)A、B位置见解析,A、B之间距离为30;(2)2或-6;(3)第20次P与A重合;点P与点B不重合.【解析】【分析】(1)点距离原点10个单位长度,且位于原点左侧,得到点B表示的数,再根据平移的过程得到点A表示的数,在数轴上表示出A、B的位置,根据数轴上两点间的距离公式,求出A、B之间的距离即可;(2)设P点对应的数为x,当P点满足PB=2PC时,得到方程,求解即可;(3)根据第一次点P表示-1,第二次点P表示2,点P表示的数依次为-3,4,-5,6…,找出规律即可得出结论.【详解】解:(1)∵点距离原点10个单位长度,且位于原点左侧,∴点B表示的数为-10,∵将点先向右平移35个单位长度,再向左平移5个单位长度,得到点,∴点A表示的数为20,∴数轴上表示如下:AB之间的距离为:20-(-10)=30;(2)∵线段上有点且,∴点C表示的数为-4,∵,设点P表示的数为x,则,解得:x=2或-6,∴点P表示的数为2或-6;(3)由题意可知:点P第一次移动后表示的数为:-1,点P第二次移动后表示的数为:-1+3=2,点P第三次移动后表示的数为:-1+3-5=-3,…,∴点P第n次移动后表示的数为(-1)n•n,∵点A表示20,点B表示-10,当n=20时,(-1)n•n=20;当n=10时,(-1)n•n=10≠-10,∴第20次P与A重合;点P与点B不重合.【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.4.已知:A,B在数轴上对应的数分别用a,b表示,O表示原点,且,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OA上有点C且|AC|=9,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)在(2)的条件下,点P第一次向右移动1个单位长度,第二次向左移动3个单位长度,第三次向右移动5个单位长度第四次向左移动7个单位长度,点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请指出,第几次移动与哪一点重合?【答案】(1)15(2)-1或7(3)能,当P从-1出发时,第4次移动后与点B重合,第11次移动后与点A重合;当P从7出发时,第3次移动后与点A重合,第12次移动后与点B重合【解析】【分析】(1)根据非负性求出a、b的值,进而得出A、B两点的距离;(2)设P对应的数是x,根据条件PB=2PC,列出方程,求出P对应的数;(3)分别针对第(2)问的两种结果,探究点P移动的位置,得出结论.(1)解:由题可知a=10,b=-5,A、B位置如图所示:AB=10-(-5)=15;(2)解:∵点C在线段OA上,且|AC|=9,∴点C对应的数是:10-9=1,设点P对应的数是x,则当P在点B左侧时,PB<PC,此种情况不成立,当P在线段BC上时,x-(-5)=2(1-x),x=-1,当P在点C右侧时,x-(-5)=2(x-1),x=7,∴点P对应的数是-1或7;(3)解:设点P第n次移动后表示的数为Pn,,①当点P对应的数是-1时,则P1=-1+1=0,P2=0-3=-3,P3=-3+5=2,P4=2-7=-5,…,∴n为奇数时,Pn=n-1,n为偶数时,Pn=-(n+1),∵点B表示的数是-5,点A表示的数是10,∴P点第4次移动后与点B重合,第11次移动后与点A重合;②当点P对应的数是7时,则P1=7+1=8,P2=8-3=5,P3=5+5=10,P4=10-7=3,…,∴n为奇数时,Pn=n+7,n为偶数时,Pn=-(n-7),∵点B表示的数是-5,点A表示的数是10,∴P点第3次移动后与点A重合,第12次移动后与点B重合,综上所述,当P从-1出发时,第4次移动后与点B重合,第11次移动后与点A重合;当P从7出发时,第3次移动后与点A重合,第12次移动后与点B重合.【点睛】本题考查了非负数的性质,两点间的距离,图形类规律探究,一元一次方程的应用,以及数轴上的动点问题,解决本题的关键在于平方数和绝对值的非负性,求出a、b以及分类思想的应用.5.已知,A、B在数轴上对应的数分别用a、b表示,且(a-20)2+|b+10|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离;(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数;(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…….点P能移动到与A或B重合的位置吗?若不能,请直接回答;若能,请直接指出,第几次移动,与哪一点重合.【答案】(1)数轴见解析,30;(2)P点对应的数为-6或2.(3)第20次P与A重合.【解析】【分析】(1)先根据非负数的性质求出a,b的值,在数轴上表示出A、B的位置,根据数轴上两点间的距离公式,求出A、B之间的距离即可;(2)设P点对应的数为x,当P点满足PB=2PC时,分三种情况讨论,根据PB=2PC求出x的值即可;(3)根据第一次点P表示-1,第二次点P表示2,点P表示的数依次为-3,4,-5,6…,找出规律即可得出结论.【详解】(1)∵(a-20)2+|b+10|=0,∴a=20,b=-10,∴AB=20-(-10)=30,数轴上标出A、B得:(2)∵|BC|=6且C在线段OB上,∴xC-(-10)=6,∴xC=-4,∵PB=2PC,当P在点B左侧时PB<PC,此种情况不成立,当P在线段BC上时,xP-xB=2(xc-xp),∴xp+10=2(-4-xp),解得:xp=-6;当P在点C右侧时,xp-xB=2(xp-xc),xp+10=2xp+8,xp=2.综上所述P点对应的数为-6或2.(3)第一次点P表示-1,第二次点P表示2,依次-3,4,-5,6…则第n次为(-1)n•n,点A表示20,则第20次P与A重合;点B表示-10,点P与点B不重合.【点睛】本题考查的是数轴,非负数的性质以及同一数轴上两点之间的距离公式的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.6.如图所示,在数轴上原点O表示数0,A点在原点的左侧所表示的数是a;B点在原点的右侧,所表示的数是b,并且a、b满足|a+8|+(b﹣4)2=0.(1)点A表示的数a为;点B表示的数b为.(2)若点P从点A出发沿数轴向右运动,速度为每秒3个单位长度;点Q从点B出发沿数轴向左运动,速度为每秒1个单位长度,P、Q两点同时运动.①若P、Q在点C处相遇,求点C所表示的数.②在P、Q运动的过程中,当P、Q两点的距离为2个单位长度时,求运动时间.【答案】(1)﹣8,4;(2)①C所表示的数为:1;②运动时间为秒或秒【解析】【分析】(1)直接利用非负数的性质得出a,b的值,进而得出答案;(2)①直接利用两点之间的距离为12,进而得出等式求出答案;②直接利用两点相遇前或相遇后分析得出答案.(1)解:∵|a+8|+(b﹣4)2=0,∴a+8=0,b﹣4=0,解得:a=﹣8,b=4,故答案为:﹣8,4;(2)①设x秒时两点相遇,则3x+x=4﹣(﹣8),解得x=3,即3秒时,两点相遇,此时点C所表示的数为:﹣8+3×3=1;②当两点相遇前的距离为2个单位长度时,3x+x=10,解得:x,当两点相遇后的距离为2个单位长度时,3x+x=14,解得:x,综上所述,运动时间为秒或秒.【点睛】此题主要考查了一元一次方程的应用,熟练掌握两点之间距离以及绝对值的性质,正确分类讨论是解题关键.7.在一条不完整的数轴上从左到右有点,其中点到点的距离为3,点到点的距离为7,如图所示:设点所对应的数的和是.(1)若以为原点,则的值是.(2)若原点在图中数轴上,且点到原点的距离为4,求的值.(3)动点从点出发,以每秒2个单位长度的速度向终点移动,动点同时从点出发,以每秒1个单位的速度向终点移动,当几秒后,两点间的距离为2?(直接写出答案即可)【答案】(1)-17;(2)m=-5或-29;(3)1秒或5秒.【解析】【分析】(1)根据已知点A到点B的距离为3和点C到点B的距离为7求出即可;(2)分为两种情况,当O在C的左边时,当O在C的右边时,求出每种情况A、B、C对应的数,即可求出m;(3)分为两种情况,当P在Q的左边时,当P在Q的左边时,假如C为原点,求出P、Q对应的数,列出算式,即可求出t.【详解】(1)当以C为原点时,A、B对应的数分别为-10,-7,则m=-10+(-7)+0=-17,故答案为:-17;(2)当O在C的左边时,A、B、C三点在数轴上所对应的数分别为-6、-3、4,则m=-6-3+4=-5,当O在C的右边时,A、B、C三点在数轴上所对应的数分别为-14、-11、-4,则m=-14-11-4=-29,综上所述:m=-5或-29;(3)假如以C为原点,则A、B、C对应的数为-10,-7,0,Q对应的数是-(7-t),P对应的数是-(10-2t),当P在Q的左边时,[-(7-t)]-[-(10-2t)]=2,解得:t=1当P在Q的右边时,[-(10-2t)]-[-(7-t)]=2,解得:t=5,即当1秒或5秒后,P、Q两点间的距离为2.【点睛】此题考查一元一次方程的应用,数轴,列代数式,能求出符合的每种情况是解题的关键,注意要进行分类讨论.8.如图,已知数轴上点A表示的数为6,点B是数轴上在点A左侧的一点,且A,B两点间的距离为10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动.(1)数轴上点B表示的数是______;(2)运动1秒时,点P表示的数是______;(3)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,请完成填空:①当点P运动______秒时,点P与点Q相遇;②当点P运动______秒时,点P与点Q的距离为8个单位长度.【答案】(1)(2)0(3)①5;②1或9【解析】【分析】(1)点向左移动时,用点表示的数减去移动的距离,即可得到移动后点表示的数,利用点移动规律解答;(2)用6减去点P移动的距离即可得到点P表示的数;(3)①设点P运动t秒时,列方程6-6t=-4-4t,求解即可;②设点P运动x秒时,点P与点Q间的距离为8个单位长度,根据当Q在P点左边时,当P在Q的左边时,分别列方程求解.(1)解:点B表示的数为6-10=-4,故答案为:-4;(2)解:点P表示的数为,故答案为:0;(3)解:①设点P运动t秒时,由题意得:6-6t=-4-4t,解得:t=5,∴当点P运动5秒时,点P与点Q相遇,故答案为:5;②设点P运动x秒时,点P与点Q间的距离为8个单位长度,由题意得:当Q在P点左边时,4x+10-6x=8,解得:x=1,当P在Q的左边时,6x-(4x+10)=8,解得:x=9.故答案为:1或9.【点睛】此题考查数轴上两点之间的距离,数轴上动点问题,动点与一元一次方程,正确理解点的运动及表示点运动前后的数是解题的关键.9.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒1个单位长度,点N从点B出发速度为点M的3倍,点P从原点出发速度为每秒0.5个单位长度.(1)求A、B两点的距离为个单位长度.(2)若点M向右运动,同时点N向左运动,求经过多长时间点M与点N相距30个单位长度?(3)若点M、N同时向右运动,求经过多长时间点M、N相遇?并求出此时点N对应的数.(4)若点M、N、P同时都向右运动,当点M与点N相遇后,点M、P继续以原来的速度向右运动,点N改变运动方向,以原来的速度向左运动,求从开始运动后,经过多长时间点P到点M、N的距离相等?【答案】(1)14;(2)4;(3)7秒,此时N点对应的数是13;(4)秒或7秒或秒【解析】【分析】(1)由题意根据两点间的距离公式即可求出A、B两点的距离;(2)根据题意设经过x秒点M与点N相距30个单位,由点M从A点出发速度为每秒1个单位,点N从点B出发速度为M点的3倍,得出x+3x+14=30求解即可;(3)由题意根据追及问题即时间等于路程除以速度差求出点M、N相遇时间,进而代入时间得出点N对应的数;(4)根据题意设从开始运动后,相遇前经过t秒点P到点M、N的距离相等,或相遇后经过t秒点P到点M、N的距离相等,根据PM=PN列出方程,进而求解即可.【详解】解:(1)∵数轴上两点A、B对应的数分别是6,-8,∴A、B两点的距离为6-(-8)=14.故答案为:14;(2)设经过x秒点M与点N相距30个单位.依题意可列方程为:x+3x+14=30,解方程,得x=4.答:经过4秒点M与点N相距30个单位;;(3)点M与点N相遇的时间为14÷(3﹣1)=7秒,此时N点对应的数是﹣8+7×3=13;(4)点M与点N相遇的时间为14÷(3﹣1)=7秒,设从开始运动后,相遇前经过t秒点P到点M、N的距离相等.依题意可列方程为:0.5t-(-8+3t)=6+t-0.5t,解得t=,设从开始运动后,相遇后经过t秒点P到点M、N的距离相等.依题意可列方程为:(t+6)-0.5t=0.5t-[13-3(t-7)],解得t=.所以秒或7秒或秒,点P到点M、N的距离相等.【点睛】本题主要考查数轴上的动点问题和一元一次方程的应用,利用行程问题的基本数量关系,以及数轴直观解决问题即可.10.已知数轴上两点对应的数分别是,,为数轴上三个动点,点从点出发速度为每秒个单位,点从点出发速度为点的倍,点从原点出发速度为每秒个单位.若点向右运动,同时点向左运动,求多长时间点与点相距个单位?若点同时都向右运动,求多长时间点到点的距离相等?【答案】(1)5秒;(2)秒或秒【解析】【分析】(1)设经过x秒点M与点N相距54个单位,由点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t秒点P到点M,N的距离相等,得出(2t+6)-t=(6t-8)-t或(2t+6)-t=t-(6t-8),进而求出即可.【详解】解:(1)设经过x秒点M与点N相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.
∴经过5秒点与点相距个单位.(2)设经过t秒点P到点M,N的距离相等.(2t+6)-t=(6t-8)-t或(2t+6)-t=t-(6t-8),t+6=5t-8或t+6=8-5t或∴经过秒或秒点到点的距离相等【点睛】此题主要考查了数轴、一元一次方程的应用,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.11.已知数轴上两点A,B对应的数分别是﹣10,8,P,Q,N为数轴上三个动点,点P从点A出发速度为每秒2个单位,点Q从点B出发,速度为点P的2倍,点N从原点出发,速度为每秒1个单位.(1)若P,Q两点不动,动点N是线段AB的三等分点时,点N所表示的数是;(2)若点P向左运动,同时点Q向右运动,求多长时间点P与点Q相距32个单位?(3)若点P,Q,N同时都向右运动求多长时间点N到点P和点Q的距离相等?【答案】(1)2或﹣4;(2)经秒点P与点Q相距32个单位;(3)经过0.5秒点N到P,Q两点的距离相等【解析】【分析】(1)根据A、B所表示的数可得AB=18,再由动点N是线段AB的三等分点可得答案;(2)设经过t秒点P与点Q相距32个单位,由题意得P的运动距离+AB的长+Q的运动距离=32,根据等量关系列出方程,再解即可;(3)设经过x秒点N到P,Q两点的距离相等,根据题意可得等量关系:P、N的距离=N、Q的距离,根据等量关系列出方程,再解即可.【详解】解:(1)∵A,B对应的数分别是﹣10,8,∴AB=18,∵动点N是线段AB的三等分点,∴N点表示的数为2或﹣4,故答案为:2或﹣4;(2)设经过t秒点P与点Q相距32个单位,由题意得:2t+18+4t=32,解得,t=,答:设经秒点P与点Q相距32个单位;(3)设经过x秒点N到P,Q两点的距离相等,由题意得:10﹣2x+x=8﹣x+4x,解得,x=0.5,答:经过0.5秒点N到P,Q两点的距离相等.【点睛】本题考查一元一次方程的应用,解题关键是正确理解题意,找出等量关系,设出未知数,列出方程.12.已知代数式M=(a﹣16)x3+20x2+10x+9是关于x的二次多项式,且二次项系数为b.如图,在数轴上有A、B、C三个点,且A、B、C三点所表示的数分别是a、b、c,已知AC=6AB.(1)直接依次写出a、b、c的值:,,;(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,E为线段AP的中点,F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,则的值是;(3)若动点P、Q分别从A、B两点同时出发,都以每秒2个单位长度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025春季中材国际校园招聘163人模拟试卷附答案详解(典型题)
- 2025年河北雄安新区新建片区学校公开选聘教职人员102名模拟试卷及参考答案详解一套
- 2025忻州市大学生乡村医生专项计划招聘9人考试参考试题及答案解析
- 2025内蒙古呼和浩特华宸信托有限责任公司市场化选聘中层管理人员1人备考考试题库附答案解析
- 2025江苏连云港市赣榆区区属国企秋季赴高校招聘高层次人才有关情况说明 (二)考试模拟试题及答案解析
- 2025年甘肃省检察官学院(天水校区)服务合作公司驾驶员招聘考试参考试题及答案解析
- 2025秋季湖南省高速公路集团有限公司校园招聘130人考试模拟试题及答案解析
- 2025协警大练兵试题及答案
- 2025息县教师考试试题及答案
- 2025护士文职面试题及答案
- 国开2025年《行政领导学》形考作业1-4答案
- 安徽省蚌埠市2025-2026学年高三上学期调研性监测语文(含答案)
- 医生进修6个月汇报大纲
- 外科病人的心理护理讲课件
- BSEN50342-1-2015铅酸起动电池完整
- 2025至2030中国特殊教育市场现状调查及前景方向研究报告
- 医院感染与消毒灭菌
- 2024年亳州利辛县招聘城市社区专职工作者考试真题
- 农村土地使用权转让协议书
- 部编人教版小学三年级语文上册全册教案
- (高清版)DZT 0334-2020 石油天然气探明储量报告编写规范
评论
0/150
提交评论