版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅县东山中学2024届数学高一上期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在单调递增,且为奇函数,若,则满足的的取值范围是A. B.C. D.2.在中,下列关系恒成立的是A. B.C. D.3.若函数与的图象关于直线对称,则的单调递增区间是()A. B.C. D.4.设集合,,则集合=()A B.C. D.5.若,且,那么角的终边落在A.第一象限 B.第二象限C.第三象限 D.第四象限6.若“”是假命题,则实数m的最小值为()A.1 B.-C. D.7.某组合体的三视图如下,则它的体积是A. B.C. D.8.设,则a,b,c的大小关系为()A. B.C. D.9.已知函数是定义在R上的偶函数,且,当时,,则在区间上零点的个数为()A.2 B.3C.4 D.510.如果“,”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边上有一点,则________.12.如图,单位圆上有一点,点P以点P0为起点按逆时针方向以每秒弧度作圆周运动,5秒后点P的纵坐标y是_____________.13.已知函数,若关于x的方程有两个不同的实根,则实数m的取值范围是______14.若将函数的图象向左平移个单位长度,得到函数的图象,则的最小值为______15.已知向量,,则向量在方向上的投影为___________.16.若,则的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中,再从条件①、条件②、条件③这三个条件中选择两个作为已知.条件①:;条件②:的最小正周期为;条件③:的图象经过点(1)求的解析式;(2)求的单调递增区间18.设全集U=R,集合,(1)当时,求;(2)若A∩B=A,求实数a的取值范围19.已知函数(1)求函数的对称中心和单调递减区间;(2)若将函数的图象上每一点向右平移个单位得到函数的图象,求函数在区间上的值域20.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点(1)求证:CD⊥平面A1ABB1;(2)求证:AC1∥平面CDB121.若向量的最大值为(1)求的值及图像的对称中心;(2)若不等式在上恒成立,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】是奇函数,故;又是增函数,,即则有,解得,故选D.【题目点拨】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为,再利用单调性继续转化为,从而求得正解.2、D【解题分析】利用三角函数诱导公式,结合三角形的内角和为,逐个去分析即可选出答案【题目详解】由题意知,在三角形ABC中,,对A选项,,故A选项错误;对B选项,,故B选项错误;对C选项,,故C选项错误;对D选项,,故D选项正确.故选D.【题目点拨】本题考查了三角函数诱导公式,属于基础题3、C【解题分析】根据题意得,,进而根据复合函数的单调性求解即可.【题目详解】解:因为函数与的图象关于直线对称,所以,,因为的解集为,即函数的定义域为由于函数在上单调递减,在上单调递减,上单调递增,所以上单调递增,在上单调递减.故选:C4、B【解题分析】先根据一元二次不等式和对数不等式的求解方法求得集合M、N,再由集合的交集运算可得选项【题目详解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故选:B5、C【解题分析】由根据三角函数在各象限的符号判断可能在的象限,再利用两角和的正弦公式及三角函数的图象由求出的范围,两范围取交集即可.【题目详解】,在第二或第三象限,,即,或,解得或,又在第二或第三象限,在第三象限.故选:C【题目点拨】本题考查三角函数值在各象限的符号、正弦函数的图象与性质,属于基础题.6、C【解题分析】根据题意可得“”是真命题,故只要即可,求出的最大值,即可求出的范围,从而可得出答案.【题目详解】解:因为“”是假命题,所以其否定“”是真命题,故只要即可,因为的最大值为,所以,解得,所以实数m的最小值为.故选:C.7、A【解题分析】,故选A考点:1、三视图;2、体积【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体和柱体的体积公式8、D【解题分析】根据指数函数的性质求得,,根据对数函数的性质求得,即可得到答案.【题目详解】由题意,根据指数函数的性质,可得,由对数函数的性质,知,即所以.故选:D9、C【解题分析】根据函数的周期性、偶函数的性质,结合零点的定义进行求解即可.【题目详解】因为,所以函数的周期为,当时,,即,因为函数是偶函数且周期为,所以有,所以在区间上零点的个数为,故选:C10、A【解题分析】利用充分条件和必要条件的定义判断.【题目详解】当,时,,故充分;当时,,,故不必要,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】直接根据任意角的三角函数的定义计算可得;【题目详解】解:因为角的终边上有一点,则所以,所以故答案为:【题目点拨】考查任意角三角函数的定义的应用,考查计算能力,属于基础题12、##【解题分析】根据单位圆上点的坐标求出,从而求出,从而求出点P的纵坐标.【题目详解】因为位于第一象限,且,故,所以,故,所以点P的纵坐标故答案为:13、【解题分析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案【题目详解】解:由题意作出函数的图象,关于x的方程有两个不同的实根等价于函数与有两个不同的公共点,由图象可知当时,满足题意,故答案为【题目点拨】本题考查方程根的个数,数形结合是解决问题的关键,属基础题14、;【解题分析】因为函数的图象向左平移个单位长度,得到,所以的最小值为15、【解题分析】直接利用投影的定义求在方向上的投影.【题目详解】因为,,设与夹角为,,则向量在方向上的投影为:.所以在方向上投影为故答案为:.16、1或【解题分析】由诱导公式、二倍角公式变形计算【题目详解】,所以或,时,;时,故答案为:1或三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)条件选择见解析,;(2)单调递增区间为,.【解题分析】(1)利用三角恒等变换化简得出.选择①②:由可求得的值,由正弦型函数的周期公式可求得的值,可得出函数的解析式;选择②③:由正弦型函数的周期公式可求得的值,由可求得的值,可得出函数的解析式;选择①③:由可求得的值,由结合可求得的值,可得出函数的解析式;(2)解不等式,可得出函数单调递增区间.【小问1详解】解:.选择①②:因为,所以,又因为的最小正周期为,所以,所以;选择②③:因为的最小正周期为,所以,则,又因为,所以,所以;选择①③:因为,所以,所以又因为,所以,所以,又因为,所以,所以【小问2详解】解:依题意,令,,解得,,所以的单调递增区间为,.18、(1)或(2)【解题分析】(1)化简集合B,根据补集、并集的运算求解;(2)由条件转化为A⊆B,分类讨论,建立不等式或不等式组求解即可.【小问1详解】当时,,,或,或【小问2详解】由A∩B=A,得A⊆B,当A=∅时,则3a>a+2,解得a>1,当A≠∅时,则,解得,综上,实数a的取值范围是19、(1)对称中心为,单调递减区间为(2)【解题分析】(1)由倍角公式以及辅助角公式化简函数,然后由正弦函数的对称中心以及单调递减区间求出函数的对称中心和单调递减区间;(2)由函数的图像向右平移个单位得到函数的解析式,再由,得到,求出函数在区间的值域,即可得到函数在区间上的值域【题目详解】解(1)令,得:,∴的对称中心为,由,得:,∴的单调区间为(2)由题意:∵∴∴∴的值域为【题目点拨】本题主要考查了正弦型函数对称中心、单调性以及在给定区间的值域,属于中档题.20、(1)见解析(2)见解析【解题分析】(1)欲证CD⊥平面A1ABB1,可先证平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,满足根据面面垂直的性质;(2)欲证AC1∥平面CDB1,根据直线与平面平行的判定定理可知只需证AC1与平面CDB1内一直线平行,连接BC1,设BC1与B1C的交点为E,连接DE.根据中位线可知DE∥AC1,DE⊂平面CDB1,AC1⊄平面CDB1,满足定理所需条件【题目详解】(1)证明:∵ABC-A1B1C1是直三棱柱,∴平面ABC⊥平面A1ABB1∵AC=BC,点D是AB的中点,∴CD⊥AB,面ABC∩面A1ABB1=AB∴CD⊥平面A1ABB1(2)证明:连接BC1,设BC1与B1C的交点为E,连接DE∵D是AB的中点,E是BC1的中点,∴DE∥AC1.∵DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【题目点拨】本题考查直线与平面平行的判定,直线与平面垂直的判定,考查学生空间想象能力,逻辑思维能力,是中档题21、(1)(2)【解题分析】(1)先利用向量的数量积公式和倍角公式对函数式进行化简,再利用两倍角公式以及两角差的正弦公式进行整
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职汽车运用与维修(发动机故障排查)试题及答案
- 2026年注册安全工程师(安全生产专业实务道路运输安全)试题及答案
- 2025年大学风电系统运行与维护(风电维护)试题及答案
- 2025年高职(眼视光技术)验光配镜技术试题及答案
- 2025年中职建筑安全(建筑安全技术)试题及答案
- 2025年中职第一学年(会计电算化)财务软件操作试题及答案
- 深度解析(2026)GBT 18400.5-2010加工中心检验条件 第5部分:工件夹持托板的定位精度和重复定位精度检验
- 2025教师个人工作总结报告范文
- 深度解析(2026)《GBT 17980.140-2004农药 田间药效试验准则(二) 第140部分水稻生长调节剂试验》
- 深度解析(2026)《GBT 17980.28-2000农药 田间药效试验准则(一) 杀菌剂防治蔬菜灰霉病》
- 2025建筑节能工程监理实施细则
- 2025年全国高校辅导员素质能力大赛基础知识测试题(附答案)
- 发电厂汽轮机副操岗位考试试卷及答案
- 阿里合伙人合同
- 雨课堂在线学堂《临床中成药应用》作业单元考核答案
- 2025年皮肤科年度工作总结报告
- 实施指南(2025)《HGT 6114-2022 废酸中重金属快速检测方法 能量 - 色散 X 射线荧光光谱法》
- 厨师厨工考试题及答案
- 理化检测知识培训课件
- 2025领导干部政治理论知识网络培训题库及参考答案
- 医院医疗质量同质化管理办法
评论
0/150
提交评论