2024届江苏省淮安市盱眙县高一上数学期末检测模拟试题含解析_第1页
2024届江苏省淮安市盱眙县高一上数学期末检测模拟试题含解析_第2页
2024届江苏省淮安市盱眙县高一上数学期末检测模拟试题含解析_第3页
2024届江苏省淮安市盱眙县高一上数学期末检测模拟试题含解析_第4页
2024届江苏省淮安市盱眙县高一上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省淮安市盱眙县高一上数学期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题中正确的是()A. B.C. D.2.已知为钝角,且,则()A. B.C. D.3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R).则“f(x)是偶函数“是“A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知函数,则使得成立的的取值范围是()A. B.C. D.5.函数,则的最大值为()A. B.C.1 D.6.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1257.函数的单调递减区间为A. B.C. D.8.为了得到函数的图像,只需把函数的图像上()A.各点的横坐标缩短到原来的倍,再向左平移个单位B.各点的横坐标缩短到原来的倍,再向左平移个单位C.各点的横坐标缩短到原来的2倍,再向左平移个单位D.各点的横坐标缩短到原来的2倍,再向左平移个单位9.“”是“”的条件A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件10.下列四组函数中,表示同一函数的一组是()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.函数,若最大值为,最小值为,,则的取值范围是______.12.在三棱锥中,,,两两垂直,,,三棱锥的侧面积为13,则该三棱锥外接球的表面积为______.13.已知为奇函数,,则____________14.函数,的图象恒过定点P,则P点的坐标是_____.15.设,则______.16.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,平面,,,,则该“阳马”外接球的表面积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,求的值.(2)已知,是第四象限角,,,求.18.已知函数为奇函数(1)求实数k值;(2)设,证明:函数在上是减函数;(3)若函数,且在上只有一个零点,求实数m的取值范围19.已知函数(1)求的单调递增区间;(2)画出在上的图象20.已知函数.(1)当时,解关于的不等式;(2)请判断函数是否可能有两个零点,并说明理由;(3)设,若对任意的,函数在区间上的最大值与最小值的差不超过1,求实数的取值范围.21.如图,正方体的棱长为,连接,,,,,,得到一个三棱锥.求:(1)三棱锥的表面积;(2)三棱锥的体积

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用平面向量的加法、加法法则可判断ABD选项的正误,利用平面向量数量积可判断C选项的正误.【题目详解】对于A选项,,A选项正确;对于B选项,,B选项错误;对于C选项,,C选项错误;对于D选项,,D选项错误.故选:A.2、C【解题分析】先求出,再利用和角的余弦公式计算求解.【题目详解】∵为钝角,且,∴,∴故选:C【题目点拨】本题主要考查同角的平方关系,考查和角的余弦公式的应用,意在考查学生对这些知识的理解掌握水平.3、B【解题分析】利用必要不充分条件的概念,结合三角函数知识可得答案.【题目详解】若φ=π2,则f(x)=Asin(ωx+π若f(x)=Asin(ωx+φ)为偶函数,则φ=kπ+π2,k∈Z,所以“f(x)是偶函数“是“φ=π故选:B【题目点拨】关键点点睛:掌握必要不充分条件的概念是解题关键.4、C【解题分析】令,则,从而,即可得到,然后构造函数,利用导数判断其单调性,进而可得,解不等式可得答案【题目详解】令,则,,所以,所以,令,则,所以,所以,所以在单调递增,所以由,得,所以,解得,故选:C【题目点拨】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得,再构造函数,利用函数的单调性解不等式.5、C【解题分析】,然后利用二次函数知识可得答案.【题目详解】,令,则,当时,,故选:C6、D【解题分析】根据求得,由此求得的值.【题目详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D7、A【解题分析】根据所给的二次函数的二次项系数大于零,得到二次函数的图象是一个开口向上的抛物线,根据对称轴,考查二次函数的变化区间,得到结果【题目详解】解:函数的二次项的系数大于零,抛物线的开口向上,二次函数的对称轴是,函数的单调递减区间是故选A【题目点拨】本题考查二次函数的性质,属于基础题8、B【解题分析】各点的横坐标缩短到原来的倍,变为,再向左平移个单位,得到.9、A【解题分析】若,则;若,则,推不出.所以“”是“”成立的充分不必要条件.故选A考点:充分必要条件10、C【解题分析】分析每个选项中两个函数的定义域,并化简函数解析式,利用函数相等的概念可得出合适的选项.【题目详解】对于A选项,函数的定义域为,函数的定义域为,A选项中的两个函数不相等;对于B选项,函数的定义域为,函数的定义域为,B选项中的两个函数不相等;对于C选项,函数、的定义域均为,且,C选项中的两个函数相等;对于D选项,对于函数,有,解得,所以,函数的定义域为,函数的定义域为,D选项中的两个函数不相等.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先化简,然后分析的奇偶性,将的最大值和小值之和转化为和有关的式子,结合对勾函数的单调性求解出的取值范围.【题目详解】,令,定义域为关于原点对称,∴,∴为奇函数,∴,∴,,由对勾函数的单调性可知在上单调递减,在上单调递增,∴,,,∴,∴,故答案为:.【题目点拨】关键点点睛:解答本题的关键在于函数奇偶性的判断,同时需要注意到奇函数在定义域上如果有最值,那么最大值和最小值一定是互为相反数.12、【解题分析】根据侧面积计算得到,再计算半径为,代入表面积公式得到答案.【题目详解】三棱锥的侧面积为,所以故该三棱锥外接球的半径为:,球的表面积为.故答案为:【题目点拨】本题考查了三棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.13、【解题分析】根据奇偶性求函数值.【题目详解】因为奇函数,,所以.故答案为:.14、【解题分析】令,解得,且恒成立,所以函数的图象恒过定点;故填.15、1【解题分析】根据指数式与对数式的互化,得到,,再结合对数的运算法则,即可求解.【题目详解】由,可得,,所以.故答案为:.16、【解题分析】以,,为棱作长方体,长方体的对角线即为外接球的直径,从而求出外接球的半径,进而求出外接球的表面积.【题目详解】由题意,以,,为棱作长方体,长方体的对角线即为外接球的直径,设外接球的半径为,则故.故答案为:【题目点拨】本题考查了多面体外接球问题以及球的表面积公式,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由正余弦的齐次式化为正切即可求值;(2)由同角的三角函数基本关系及两角和的正弦公式求解.【题目详解】(1).(2),是第四象限角,,,,,18、(1)-1;(2)见解析;(3).【解题分析】(1)由于为奇函数,可得,即可得出;(2)利用对数函数的单调性和不等式的性质通过作差即可得出;(3)利用(2)函数的单调性、指数函数的单调性,以及零点存在性定理即可得出m取值范围【小问1详解】为奇函数,,即,,整理得,使无意义而舍去)【小问2详解】由(1),故,设,(a)(b)时,,,,(a)(b),在上时减函数;【小问3详解】由(2)知,h(x)在上单调递减,根据复合函数的单调性可知在递增,又∵y=在R上单调递增,在递增,在区间上只有一个零点,(4)(5)≤0,解得.19、(1),(2)见解析【解题分析】(1)计算,得到答案.(2)计算函数值得到列表,再画出函数图像得到答案.【题目详解】(1)令,,得,即,.故的单调递增区间为,.(2)因为所以列表如下:0024002【题目点拨】本题考查了三角函数的单调性和图像,意在考查学生对于三角函数性质的灵活运用.20、(1)(2)不可能,理由见解析(3)【解题分析】(1)结合对数函数的定义域,解对数不等式求得不等式的解集.(2)由,求得,,但推出矛盾,由此判断没有两个零点.(3)根据函数在区间上的最大值与最小值的差不超过1列不等式,结合分离常数法来求得的取值范围.【小问1详解】当时,不等式可化为,有,有解得,故不等式,的解集为.【小问2详解】令,有,有,,,,则,若

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论