版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪市师院附中2024届高一上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数y=的定义域是()A. B.C. D.2.三个数的大小关系是()A. B.C. D.3.若,,,则的大小关系为()A. B.C. D.4.函数在上的最小值为,最大值为2,则的最大值为()A. B.C. D.25.已知,,则()A. B.C. D.6.的值为A. B.C. D.7.下列命题中正确的是()A. B.C. D.8.已知函数,若方程有三个不同的实数根,则实数的取值范围是A. B.C. D.9.函数的零点所在区间为()A. B.C. D.10.已知函数在[2,8]上单调递减,则k的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,,且,则的最小值为__________12.已知函数的图象如图所示,则函数的解析式为__________.13.若函数的图象关于直线对称,则的最小值是________.14.幂函数的图像在第___________象限.15.命题,,则为______.16.已知函数(且),若对,,都有.则实数a的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的终边经过点.(1)求的值;(2)求的值.18.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)设,解不等式19.如果一个函数的值域与其定义域相同,则称该函数为“同域函数”.已知函数的定义域为且.(Ⅰ)若,,求的定义域;(Ⅱ)当时,若为“同域函数”,求实数的值;(Ⅲ)若存在实数且,使得为“同域函数”,求实数的取值范围.20.已知,函数.(1)若有两个零点,且的最小值为,当时,判断函数在上的单调性,并说明理由;(2)设,记为集合中元素的最大者与最小者之差.若对,恒成立,求实数a的取值范围.21.已知,,计算:(1)(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据偶次方根的被开方数为非负数,对数的真数大于零列不等式,由此求得函数的定义域.【题目详解】依题意,所以的定义域为.故选:A2、A【解题分析】利用指数函数、对数函数、正弦函数的单调性结合中间量法即可求解【题目详解】解:,,,故选:A3、A【解题分析】由指数函数的单调性可知,由对数函数的单调性可知,化简,进而比较大小即可【题目详解】因为在上是增函数,所以;在上是增函数,所以;,所以,故选:A【题目点拨】本题考查指数、对数比较大小问题,考查指数函数、对数函数的单调性的应用4、B【解题分析】将写成分段函数,画出函数图象数形结合,即可求得结果.【题目详解】当x≥0时,,当<0时,,作出函数的图象如图:当时,由=,解得=2当时,当<0时,由,即,解得=,∴此时=,∵[]上的最小值为,最大值为2,∴2,,∴的最大值为,故选:B【题目点拨】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题.5、B【解题分析】应用同角关系可求得,再由余弦二倍角公式计算.【题目详解】因,所以,所以,所以.故选:B.【题目点拨】本题考查同角间的三角函数关系,考查余弦的二倍角公式.求值时要注意角的取值范围,以确定函数值的正负.6、B【解题分析】.故选B.7、A【解题分析】利用平面向量的加法、加法法则可判断ABD选项的正误,利用平面向量数量积可判断C选项的正误.【题目详解】对于A选项,,A选项正确;对于B选项,,B选项错误;对于C选项,,C选项错误;对于D选项,,D选项错误.故选:A.8、A【解题分析】由得画出函数的图象如图所示,且当时,函数的图象以为渐近线结合图象可得当的图象与直线有三个不同的交点,故若方程有三个不同的实数根,实数的取值范围是.选A点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决,如在本题中,方程根的个数,即为直线与图象的公共点的个数;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.9、B【解题分析】由零点存在定理判定可得答案.【题目详解】因为在上单调递减,且,,所以的零点所在区间为故选:B10、C【解题分析】利用二次函数的单调性可得答案.【题目详解】因为函数的对称轴为所以要使函数在[2,8]上单调递减,则有,即故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】运用均值不等式中“1”的妙用即可求解.【题目详解】解:因为,,且,所以,当且仅当时等号成立,故答案为:.12、【解题分析】根据最大值得,再由图像得周期,从而得,根据时,取得最大值,利用整体法代入列式求解,再结合的取值范围可得.【题目详解】根据图像的最大值可知,,由,可得,所以,再由得,,所以,因为,所以,故函数的解析式为.故答案为:.13、【解题分析】根据正弦函数图象的对称性求解.【题目详解】依题意可知,得,所以,故当时,取得最小值.故答案为:.【题目点拨】本题考查三角函数的对称性.正弦函数的对称轴方程是,对称中心是14、【解题分析】根据幂函数的定义域及对应值域,即可确定图像所在的象限.【题目详解】由解析式知:定义域为,且值域,∴函数图像在一、二象限.故答案为:一、二.15、,【解题分析】由全称命题的否定即可得解.【题目详解】因为命题为全称命题,所以为“,”.故答案为:,.16、【解题分析】由条件可知函数是增函数,可得分段函数两段都是增函数,且时,满足,由不等式组求解即可.【题目详解】因为对,且都有成立,所以函数在上单调递增.所以,解得.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】因为角终边经过点,设,,则,所以,,.(1)即得解;(2)化简即可得解.试题解析:因为角终边经过点,设,,则,所以,,.(1)(2)18、(1);(2)奇函数,理由见解析;(3).【解题分析】(1)由对数真数大于零可构造不等式组求得结果;(2)根据奇偶性定义判断即可得到结论;(3)将函数化为,由对数函数性质可知,解不等式求得结果.【题目详解】(1)由题意得:,解得:,定义域为.(2),为定义在上的奇函数.(3)当时,,由得:,解得:,的解集为.19、(Ⅰ);(Ⅱ);(Ⅲ).【解题分析】(Ⅰ)当,时,解出不等式组即可;(Ⅱ)当时,,分、两种情况讨论即可;(Ⅲ)分、且、且三种情况讨论即可.【题目详解】(Ⅰ)当,时,由题意知:,解得:.∴的定义域为;(Ⅱ)当时,,(1)当,即时,的定义域为,值域为,∴时,不是“同域函数”.(2)当,即时,当且仅当时,为“同域函数”.∴.综上所述,的值为.(Ⅲ)设的定义域为,值域为.(1)当时,,此时,,,从而,∴不是“同域函数”.(2)当,即,设,则的定义域.①当,即时,的值域.若为“同域函数”,则,从而,,又∵,∴的取值范围为.②当,即时,的值域.若为“同域函数”,则,从而,此时,由,可知不成立.综上所述,的取值范围为【题目点拨】关键点睛:解答本题的关键是理解清楚题意,能够分情况求出的定义域和值域.20、(1)函数在区间上是单调递减,理由见解析(2)【解题分析】(1)运用单调性的定义去判断或者根据函数本身的性质去判断即可;(2)区间与二次函数的对称轴比较,从而的情况中分类讨论,而后得到的解析式,通过函数解析式求出最小值,再解不等式即可.【小问1详解】方法1:因为,由题意得,即,所以时,即,所以,,对于任意设,所以,因为,又,所以而,所以,所以,所以函数在区间上是单调递减的.方法2:因为,由题意得,即,所以时,即,所以,,因为,所以函数图像的对称轴方程为,因为,所以,即,所以函数在上是单调递减的.【小问2详解】设,,因为函数对称轴为,①当即时,在上单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025秋季广西北海市中日友谊中学学期教师招聘参考笔试题库附答案解析
- 2025年黄山市祁门县国有投资集团有限公司招聘3人参考笔试题库附答案解析
- 京东招聘专员面试题解析
- 环境事务管理知识竞赛题库含答案
- 绿色经济投资引导方案
- 销售经理招聘面试题集与技巧指导
- 农业行业供应链管理面试问题集
- 2025上海生物技术学院招聘生物技术学院课题组临床转化研究助理岗位1人考试备考题库及答案解析
- 2026年山西省选调生招录(面向西北农林科技大学)考试参考试题及答案解析
- 软件定义网络(SDN)基础教程(第2版)(微课版) 课件 第5章 SDN协议接口v1.1
- 铝锭贸易专业知识培训课件
- 2025国考国资委申论高分笔记
- 2025年高级经济师《人力资源》考试真题及答案
- 矿山项目经理岗位职责与考核标准
- 2025年乡村旅游民宿业发展现状与前景可行性研究报告
- 国家安全生产公众号
- 2025年中国多深度土壤水分传感器行业市场全景分析及前景机遇研判报告
- 2025档案管理职称考试题库及答案
- 眼科护理读书报告
- 贵州防空工程管理办法
- 外墙真石漆合同补充协议
评论
0/150
提交评论