




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省合阳县黑池中学2024届高一数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线l1∥l2,且l1的倾斜角为45°,l2过点(4,6),则l2还过下列各点中的A.(1,8) B.(-2,0)C.(9,2) D.(0,-8)2.已知正实数x,y,z,满足,则()A. B.C. D.3.命题:,的否定是()A., B.,C., D.,4.已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B.C. D.5.已知函数,则的解析式是()A. B.C. D.6.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β其中正确的命题是()A.①② B.②③C.③④ D.④7.在正项等比数列中,若依次成等差数列,则的公比为A.2 B.C.3 D.8.已知函数(其中为自然对数的底数,…),若实数满足,则()A. B.C. D.9.如图所示的时钟显示的时刻为,此时时针与分针的夹角为.若一个半径为的扇形的圆心角为,则该扇形的面积为()A. B.C. D.10.如图:在正方体中,设直线与平面所成角为,二面角的大小为,则为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则________.12.已知函数在区间上是增函数,则下列结论正确是__________(将所有符合题意的序号填在横线上)①函数在区间上是增函数;②满足条件的正整数的最大值为3;③.13.函数的递增区间是__________________14.已知正数x、y满足x+=4,则xy的最大值为_______.15.命题“存在x∈R,使得x2+2x+5=0”的否定是16.已知非空集合,(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(a>0且)是偶函数,函数(a>0且)(1)求b的值;(2)若函数有零点,求a的取值范围;(3)当a=2时,若,使得恒成立,求实数m的取值范围18.(1)化简(2)求值.19.已知函数是定义在上的奇函数,且.(1)求函数解析式;(2)判断函数在上的单调性,并用定义证明;(3)解关于的不等式:.20.已知函数(1)求的对称轴方程;(2)若在上,函数最小值为且有两个不相等的实数根,求实数m的取值范围21.已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:012300.71.63.3为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由题意求出得方程,将四个选项逐一代入,即可验证得到答案.【题目详解】由题直线l1∥l2,且l1的倾斜角为45°,则的倾斜角为45,斜率由点斜式可得的方程为即四个选项中只有B满足方程.即l2还过点(-2,0).故选B【题目点拨】本题考查直线方程的求法,属基础题.2、A【解题分析】根据指数函数和对数函数的图像比较大小即可.【题目详解】令,则,,,由图可知.3、D【解题分析】由全称量词命题与存在量词命题的否定判断即可.【题目详解】由全称量词命题与存在量词命题的否定,可知原命题的否定为,故选:D4、B【解题分析】圆的圆心在直线上,设圆心为.圆与直线及都相切,所以,解得.此时半径为:.所以圆的方程为.故选B.5、A【解题分析】由于,所以.6、D【解题分析】利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可【题目详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题故选D【题目点拨】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.7、A【解题分析】由等差中项的性质可得,又为等比数列,所以,化简整理可求出q的值【题目详解】由题意知,又为正项等比数列,所以,且,所以,所以或(舍),故选A【题目点拨】本题考查等差数列与等比数列的综合应用,熟练掌握等差中项的性质,及等比数列的通项公式是解题的关键,属基础题8、B【解题分析】化简得到,得到,进而得到,即可求解.【题目详解】由题意,函数,可得,可得,即,因为,所以.故选:B.9、C【解题分析】求出的值,利用扇形的面积公式可求得扇形的面积.【题目详解】由图可知,,所以该扇形的面积故选:C.10、B【解题分析】连结BC1,交B1C于O,连结A1O,∵在正方体ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直线A1B与平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°故答案选:B二、填空题:本大题共6小题,每小题5分,共30分。11、7【解题分析】根据题意直接求解即可【题目详解】解:因为,所以,故答案为:712、①②③【解题分析】!由题函数在区间上是增函数,则由可得为奇函数,则①函数在区间(,0)上是增函数,正确;由可得,即有满足条件的正整数的最大值为3,故②正确;由于由题意可得对称轴,即有.,故③正确故答案为①②③【题目点拨】本题考查正弦函数的图象和性质,重点是对称性和单调性的运用,考查运算能力,属于中档题13、【解题分析】由已知有,解得,即函数的定义域为,又是开口向下的二次函数,对称轴,所以的单调递增区间为,又因为函数以2为底的对数型函数,是增函数,所以函数的递增区间为点睛:本题主要考查复合函数的单调区间,属于易错题.在求对数型函数的单调区间时,一定要注意定义域14、8【解题分析】根据,利用基本不等式即可得出答案.【题目详解】解:,当且仅当,即时,取等号,所以xy的最大值为8.故答案为:8.15、对任何x∈R,都有x2+2x+5≠0【解题分析】因为命题“存在x∈R,使得x2+2x+5=0”是特称命题,根据特称命题的否定是全称命题,可得命题的否定为:对任何x∈R,都有x2+2x+5≠0故答案为对任何x∈R,都有x2+2x+5≠016、(1)(2)【解题分析】(1)根据集合的运算法则计算;(2)根据充分不必要条件的定义求解【小问1详解】由已知,或,所以或=;【小问2详解】“”是“”的充分不必要条件,则,解得,所以的范围是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解题分析】(1)根据f(x)为偶函数,由f(-x)=-f(x),即对恒成立求解;(2)由有零点,转化为有解,令,转化为函数y=p(x)图象与直线y=a有交点求解;(3)根据,使得成立,由求解.【小问1详解】解:因f(x)为偶函数,所以,都有f(-x)=-f(x),即对恒成立,对恒成立,对恒成立,所以【小问2详解】因为有零点即有解,即有解令,则函数y=p(x)图象与直线y=a有交点,当0<a<1时,无解;当a>1时,在上单调递减,且,所以在上单调递减,值域为由有解,可得a>0,此时a>1,综上可知,a的取值范围是;【小问3详解】,当时,,由(2)知,当且仅当时取等号,所以的最小值为1,因为,使得成立,所有,即对任意的恒成立,设,所以当t>1时,恒成立,即,对t>1恒成立,设函数在单调递减,所以,所以m≥0,即实数m的取值范围为18、(1);(2).【解题分析】(1)利用指数运算性质化简可得结果;(2)利用对数、指数的运算性质化简可得结果.【题目详解】(1)原式;(2)原式.19、(1);(2)函数在上是增函数,证明见解析;(3).【解题分析】(1)根据奇函数的定义可求得的值,再结合已知条件可求得实数的值,由此可得出函数的解析式;(2)判断出函数在上是增函数,任取、且,作差,因式分解后判断的符号,即可证得结论成立;(3)由得,根据函数的单调性与定义域可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:因为函数是定义在上的奇函数,则,即,可得,则,所以,,则,因此,.【小问2详解】证明:函数在上是增函数,证明如下:任取、且,则,因为,则,,故,即.因此,函数在上是增函数.【小问3详解】解:因为函数是上的奇函数且为增函数,由得,由已知可得,解得.因此,不等式的解集为.20、(1),;(2).【解题分析】(1)应用二倍角正余弦公式、辅助角公式可得,根据余弦函数的性质求的对称轴方程.(2)由题设可得,画出的图象,进而由已知条件及数形结合思想求m的取值范围【小问1详解】由题设,,令,,可得,.∴的对称轴方程为,.【小问2详解】令,在上,而时有,且图象如下:又最小值为且有两个不相等的实数根,由上图知:,可得.21、(1)选择函数模型,函数解析式为;(2)以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元.【解题分析】(1)对题中所给的三个函【解题分析】对应其性质,结合题中所给的条件,作出正确的选择,之后利用待定系数法求得解析式,得出结果;(2)根据题意,列出函数解析式,之后应用配方法求得最值,得到结果.【题目详解】(1)若选择函数模型,则该函数在上为单调减函数,这与试验数据相矛盾,所以不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论