




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
滁州市重点中学2024届数学高一上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在人类用智慧架设的无数座从已知通向未知的金桥中,用二分法求方程的近似解是其中璀璨的一座.已知为锐角的内角,满足,则()A. B.C. D.2.已知函数是上的增函数,则实数的取值范围为()A. B.C. D.3.已知,点在轴上,,则点的坐标是A. B.C.或 D.4.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是A.平面B.与是异面直线C.D.5.已知全集,集合,则()A. B.C. D.6.已如集合,,,则()A. B.C. D.7.已知集合,,则A.或 B.或C. D.或8.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移个单位,得到的图像对应的解析式为()A. B.C. D.9.“”是“”的()A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件10.已知函数则其在区间上的大致图象是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数f(x)=-x+2,则满足f(x-1)+f(2x)>0的x的取值范围是______.12.已知,,且,则的最小值为___________.13.已知,则的最小值为_______________.14.已知函数,则函数的值域为______15.函数的图像恒过定点的坐标为_________.16.已知函数的图上存在一点,函数的图象上存在一点,恰好使两点关于直线对称,则满足上述要求的实数的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在R上的奇函数,当时,(Ⅰ)求函数在R上的解析式;(Ⅱ)若,函数,是否存在实数m使得的最小值为,若存在,求m的值;若不存在,请说明理由18.在密闭培养环境中,某类细菌的繁殖在初期会较快,随着单位体积内细菌数量的增加,繁殖速度又会减慢.在一次实验中,检测到这类细菌在培养皿中的数量(单位:百万个)与培养时间(单位:小时)的关系为:根据表格中的数据画出散点图如下:为了描述从第小时开始细菌数量随时间变化的关系,现有以下三种模型供选择:①,②,③(1)选出你认为最符合实际的函数模型,并说明理由;(2)利用和这两组数据求出你选择的函数模型的解析式,并预测从第小时开始,至少再经过多少个小时,细菌数量达到百万个19.已知函数的图象关于直线对称,且图象相邻两个最高点的距离为.(1)求和的值;(2)若,求的值.20.已知,.(1)求;(2)若,,求,并计算.21.已知函数.(1)若,解不等式;(2)解关于x的不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】设设,则在单调递增,再利用零点存在定理即可判断函数的零点所在的区间,也即是方程的根所在的区间.【题目详解】因为为锐角的内角,满足,设,则在单调递增,,在取,得,,因为,所以的零点位于区间,即满足的角,故选:C【题目点拨】关键点点睛:本题解题的关键点是令,根据零点存在定理判断函数的零点所在的区间.2、A【解题分析】根据分段函数是上的增函数,则每一段都为增函数,且右侧的函数值不小于左侧的函数值求解.【题目详解】函数是上增函数,所以,解得,所以实数的取值范围是故选:A.3、C【解题分析】依题意设,根据,解得,所以选.4、D【解题分析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;对于C,A1C1,B1E是异面直线;故C错误;对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故选D.5、A【解题分析】首先进行并集运算,然后进行补集运算即可.【题目详解】由题意可得:,则.故选:A.6、C【解题分析】根据交集和补集的定义可求.【题目详解】,故,故选:C.7、A【解题分析】进行交集、补集的运算即可.【题目详解】;,或故选A.【题目点拨】考查描述法的定义,以及交集、补集的运算.8、B【解题分析】由三角函数的平移变换即可得出答案.【题目详解】函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得,再将所得的图象向左平移个单位可得故选:B.9、D【解题分析】求得的解集,结合充分条件、必要条件的判定方法,即可求解.【题目详解】由,可得或,所以“”是“或”成立的充分不必要条件,所以“”是“”必要不充分条件.故选:D.10、D【解题分析】为奇函数,去掉A,B;当时,所以选D.点睛:(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去,即将函数值的大小转化自变量大小关系二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由函数的解析式可得,据此解不等式即可得答案【题目详解】解:根据题意,函数,则,若,即,解可得:,即的取值范围为;故答案为.【题目点拨】本题考查函数的单调性的应用,涉及不等式的解法,属于基础题.12、【解题分析】由已知凑配出积为定值,然后由基本不等式求得最小值【题目详解】因为,,且,所以,当且仅当,即时等号成立故答案为:13、##225【解题分析】利用基本不等式中“1”的妙用即可求解.【题目详解】解:因为,所以,当且仅当,即时等号成立,所以的最小值为.故答案为:.14、【解题分析】先求的的单调性和值域,然后代入中求得函数的值域.【题目详解】由于为上的增函数,而,,即,对,由于为增函数,故,即函数的值域为,也即.【题目点拨】本小题主要考查函数的单调性,考查函数的值域的求法,考查复合函数值域的求法.属于中档题.15、(1,2)【解题分析】令真数,求出的值和此时的值即可得到定点坐标【题目详解】令得:,此时,所以函数的图象恒过定点,故答案为:16、【解题分析】函数g(x)=lnx的反函数为,若函数f(x)的图象上存在一点P,函数g(x)=lnx的图象上存在一点Q,恰好使P、Q两点关于直线y=x对称,则函数g(x)=lnx的反函数图象与f(x)图象有交点,即在x∈R上有解,,∵x∈R,∴∴即.三、三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)存在实数使得的最小值为【解题分析】Ⅰ根据奇函数的对称性进行转化求解即可Ⅱ求出的表达式,利用换元法转化为一元二次函数,通过讨论对称轴与区间的关系,判断最小值是否满足条件即可【题目详解】Ⅰ若,则,∵当时,且是奇函数,∴当时,,即当时,,则Ⅱ若,,设,∵,∴,则等价为,对称轴为,若,即时,在上为增函数,此时当时,最小,即,即成立,若,即时,在上为减函数,此时当时,最小,即,此时不成立,若,即时,在上不单调,此时当时,最小,即,此时在时是减函数,当时取得最小值为,即此时不满足条件综上只有当才满足条件即存在存在实数使得最小值为【题目点拨】本题主要考查函数奇偶性的应用,以及利用换元法转化为一元二次函数,结合一元二次函数单调性的性质是解决本题的关键,综合性较强,运算量较大,有一定的难度18、(1),理由见解析;(2),至少再经过小时,细菌数量达到百万个【解题分析】(1)分析可知,所选函数必须满足三个条件:(ⅰ)定义域包含;(ⅱ)增函数;(ⅲ)随着自变量的增加,函数值的增长速度变小.对比三个函数模型可得结论;(2)将所选的两点坐标代入函数解析式,求出参数值,可得出函数模型的解析式,再由,解该不等式即可得出结论.【小问1详解】解:依题意,所选函数必须满足三个条件:(ⅰ)定义域包含;(ⅱ)增函数;(ⅲ)随着自变量的增加,函数值的增长速度变小因为函数的定义域为,时无意义;函数随着自变量的增加,函数值的增长速度变大函数可以同时符合上述条件,所以应该选择函数【小问2详解】解:依题意知,解得,所以令,解得所以,至少再经过小时,细菌数量达到百万个19、(1),;(2)【解题分析】(1)根据对称轴和周期可求和的值(2)由题设可得,利用同角的三角函数的基本关系式可得,利用诱导公式和两角和的正弦可求的值【题目详解】(1)因为图象相邻两个最高点的距离为,故周期为,所以,故又图象关于直线,故,所以,因为,故(2)由(1)得,因为,故,因为,故,故又【题目点拨】方法点睛:三角函数的中的化简求值问题,我们往往从次数的差异、函数名的差异、结构的差异和角的差异去分析,处理次数差异的方法是升幂降幂法,解决函数名差异的方法是弦切互化,而结构上差异的处理则是已知公式的逆用等,最后角的差异的处理则往往是用已知的角去表示未知的角.20、(1)(2),【解题分析】(1)利用同角三角函数的关系可得.(2)将写成,再用两角差的余弦求解;由可求,先化简再代入求解.【小问1详解】,且,解得,,所以.【小问2详解】因,,所以,所以,所以.因为,,所以,,所以.21、(1);(2)答案见解析【解题分析】(1)由抛物线开口向上,且其
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025简易住宅抵押贷款合同协议
- 陕西省cet4英语试卷及答案
- 石灰在汽车尾气净化中的应用考核试卷
- 植物油的非食品应用前景考核试卷
- 生物化工产品制备考核试卷
- 肥料产品在农业生产中的应用效果考核试卷
- 特种印刷技术在包装装潢中的应用考核试卷
- 2025年中国贴身美体内衣市场调查研究报告
- 妇幼保健院患者满意度调查考核试卷
- 航空旅游航拍影视制作考核试卷
- 大型活动策划与管理第十一章 大型活动后勤保障
- 测土配方施肥技术
- 【沙利文公司】2024年中国银发经济发展报告
- 海绵城市工程施工方案
- 内蒙古自治区高等职业院校2024年对口招收中等职业学校毕业生单独考试语文试题(无答案)
- 《喝出营养:解惑饮水、矿物质与健康》随笔
- 中职计算机专业《计算机网络基础》说课稿
- 【H公司员工培训的现状、问题和对策探析(含问卷)13000字(论文)】
- 债权转让项目合同范本
- 安徽省合肥市瑶海区部分学校2023-2024学年英语八下期末统考模拟试题含答案
- GB/T 4706.15-2024家用和类似用途电器的安全第15部分:皮肤及毛发护理器具的特殊要求
评论
0/150
提交评论