




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省曲靖市麒麟区三中数学高一上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.福州新港江阴港区地处福建最大海湾兴化湾西北岸,全年全日船泊进出港不受航道及潮水的限制,是迄今为止“我国少有、福建最佳”的天然良港.如图,是港区某个泊位一天中6时到18时的水深变化曲线近似满足函数,据此可知,这段时间水深(单位:m)的最大值为()A.5 B.6C.8 D.102.已知命题:,,则是()A., B.,C., D.,3.已知菱形的边长为2,,点分别在边上,,.若,则等于()A. B.C. D.4.已知,则=()A. B.C. D.5.若a>b>1,0<c<1,则下列式子中不正确的是()A. B.C. D.6.已知函数,的图象与直线有两个交点,则的最大值为()A.1 B.2C. D.7.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值8.如果,且,那么下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则9.命题“”的否定是()A. B.C. D.10.若都是锐角,且,,则A. B.C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.的化简结果为____________12.函数的最小值为________.13.已知函数,若函数在区间内有3个零点,则实数的取值范围是______14.若角的终边与以原点为圆心的单位圆交于点,则的值为___________.15.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________16.若函数(其中)在区间上不单调,则的取值范围为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的函数为常数).(1)求的奇偶性;(2)已知在上有且只有一个零点,求实数a的值.18.已知函数为定义在R上的奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明;19.已知圆经过(2,5),(﹣2,1)两点,并且圆心在直线yx上.(1)求圆的标准方程;(2)求圆上的点到直线3x﹣4y+23=0的最小距离.20.如图,以轴的非负半轴为始边作角与,它们的终边分别与单位圆相交于点,已知点的横坐标为(1)求的值;(2)若,求的值21.某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2500万元,每生产百件,需另投入成本(单位:万元),当年产量不足30百件时,;当年产量不小于30百件时,;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.(1)求年利润(万元)关于年产量(百件)的函数关系式;(2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】从图象中的最小值入手,求出,进而求出函数的最大值,即为答案.【题目详解】从图象可以看出,函数最小值为-2,即当时,函数取得最小值,即,解得:,所以,当时,函数取得最大值,,这段时间水深(单位:m)的最大值为8m.故选:C2、D【解题分析】根据命题的否定的定义写出命题的否定,然后判断【题目详解】命题:,的否定是:,故选:D3、C【解题分析】,,即①,同理可得②,①+②得,故选C考点:1.平面向量共线充要条件;2.向量的数量积运算4、B【解题分析】根据两角和的正切公式求出,再根据二倍角公式以及同角三角函数的基本关系将弦化切,代入求值即可.【题目详解】解:解得故选:【题目点拨】本题考查三角恒等变换以及同角三角函数的基本关系,属于中档题.5、D【解题分析】利用对数函数、指数函数与幂函数的单调性即可判断出正误.【题目详解】解:,,,A正确;是减函数,,B正确;为增函数,,C正确.是减函数,,D错误.故选.【题目点拨】本题考查了对数函数、指数函数与幂函数的单调性,考查了推理能力与计算能力,属于基础题.6、D【解题分析】由可得,然后可得的最大值为,即可得到答案.【题目详解】由可得,所以当时,由与有两个交点可得的最大值为所以则的最大值为故选:D7、B【解题分析】换元法后用基本不等式进行求解.【题目详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B8、D【解题分析】根据不等式的性质逐项分析判断即可.【题目详解】对于A,若,,满足,但不成立,错误;对于B,若,则,错误;对于C,若,,满足,但不成立,错误;对于D,由指数函数的单调性知,正确.故选:D.9、D【解题分析】直接利用全称命题的否定为特称命题进行求解.【题目详解】命题“”为全称命题,按照改量词否结论的法则,所以否定为:,故选:D10、A【解题分析】先计算出,再利用余弦的和与差公式,即可.【题目详解】因为都是锐角,且,所以又,所以,所以,,故选A.【题目点拨】本道题考查了同名三角函数关系和余弦的和与差公式,难度较大二、填空题:本大题共6小题,每小题5分,共30分。11、18【解题分析】由指数幂的运算与对数运算法则,即可求出结果.【题目详解】因为.故答案为18【题目点拨】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.12、【解题分析】原函数化为,令,将函数转化为,利用二次函数的性质求解.【题目详解】由原函数可化为,因为,令,则,,又因为,所以,当时,即时,有最小值.故答案为:13、【解题分析】函数在区间内有3个零点,等价于函数和的图象在区间内有3个交点,作出函数和的图象,利用数形结合可得结果【题目详解】若,则,,若,则,,若,则,,,,,,设和,则方程在区间内有3个不等实根,等价为函数和在区间内有3个不同的零点作出函数和的图象,如图,当直线经过点时,两个图象有2个交点,此时直线为,当直线经过点,时,两个图象有3个交点;当直线经过点和时,两个图象有3个交点,此时直线为,当直线经过点和时,两个图象有3个交点,此时直线为,要使方程,两个图象有3个交点,在区间内有3个不等实根,则,故答案为【题目点拨】本题主要考查函数的零点与方程根的个数的应用,以及数形结合思想的应用,属于难题14、##【解题分析】直接根据三角函数定义求解即可.【题目详解】解:因为角的终边与以原点为圆心的单位圆交于点,所以根据三角函数单位圆的定义得故答案为:15、【解题分析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案16、【解题分析】化简f(x),结合正弦函数单调性即可求ω取值范围.【题目详解】,x∈,①ω>0时,ωx∈,f(x)在不单调,则,则;②ω<0时,ωx∈,f(x)在不单调,则,则;综上,ω的取值范围是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)偶函数,证明见解析,(2)【解题分析】(1)利用定义判断函数的奇偶性;(2)利用该函数的对称性,数形结合得到实数a的值.【题目详解】(1)函数的定义域为R,,即,∴为偶函数,(2)y=f(x)的图象关于y轴对称,由题意知f(x)=0只有x=0这一个零点,把(0,0)代入函数表达式得:a2+2a﹣3=0,解得:a=﹣3,或a=1,当a=1时,在上单调递增,∴此时显然符合条件;当a=﹣3时,,,即,即在上存在零点,知f(x)至少有三个根,不符合所以,符合条件的实数a的值为1【题目点拨】本题主要考查函数零点的概念,要注意函数的零点不是点,而是函数f(x)=0时的x的值,属于中档题18、(1);(2)是R上的增函数,证明详见解析.【解题分析】(1)由奇函数定义可解得;(2)是上的增函数,可用定义证明.【题目详解】(1)因为为定义在上的奇函数,所以对任意,,即,所以,因为,所以,即.(2)由(1)知,则是上的增函数,下用定义证明.任取,且,,当时,,又,所以,即,故是上的增函数.19、(1)(x﹣2)2+(y﹣1)2=16(2)1【解题分析】(1)先求出圆心的坐标和圆的半径,即得圆的标准方程;(2)求出圆心到直线3x﹣4y+23=0的距离即得解.【题目详解】(1)A(2,5),B(﹣2,1)中点为(0,3),经过A(2,5),B(﹣2,1)的直线的斜率为,所以线段AB中垂线方程为,联立直线方程y解得圆心坐标为(2,1),所以圆的半径.所以圆的标准方程为(x﹣2)2+(y﹣1)2=16.(2)圆的圆心为(2,1),半径r=4.圆心到直线3x﹣4y+23=0的距离d.则圆上的点到直线3x﹣4y+23=0的最小距离为d﹣r=1.【题目点拨】本题主要考查圆的标准方程的求法和圆上的点到直线的距离的最值的求法,意在考查学生对这些知识的理解掌握水平.20、(1);(2).【解题分析】(1)根据三角函数的定义,求三角函数,代入求值;(2)由条件可知,,利用诱导公式,结合三角函数的定义,求函数值.【小问1详解】的横坐标为,.【小问2详解】由题可得,,.21、(1);(2)100百件【解题分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届寻甸回族彝族自治县三年级数学第一学期期末监测试题含解析
- 工程经济管理原则试题及答案
- 市政工程市场分析试题及答案
- 秋冬季消防安全教育
- 商业合作伙伴关系协议说明
- 买卖手购房合同书
- 项目监管体系的构建试题及答案
- 酒店旅游行业在线预订系统优化方案
- 农学作物病虫害防治知识卷
- 学历认证书教育背景证明(8篇)
- 线上陪玩店合同协议
- 蓉城小史官考试试题及答案
- GB/T 196-2025普通螺纹基本尺寸
- 中美关税贸易战
- 土地房屋测绘项目投标方案技术标
- 中华人民共和国农村集体经济组织法
- 中华传统文化之文学瑰宝学习通超星期末考试答案章节答案2024年
- 2023中华护理学会团体标准-注射相关感染预防与控制
- 在线考试系统的设计与实现论文
- 吊顶检验报告(共5页)
- 供水公司组织机构配置
评论
0/150
提交评论