北京市丰台区第十二中学2024届数学高一上期末综合测试模拟试题含解析_第1页
北京市丰台区第十二中学2024届数学高一上期末综合测试模拟试题含解析_第2页
北京市丰台区第十二中学2024届数学高一上期末综合测试模拟试题含解析_第3页
北京市丰台区第十二中学2024届数学高一上期末综合测试模拟试题含解析_第4页
北京市丰台区第十二中学2024届数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市丰台区第十二中学2024届数学高一上期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若方程有8个相异实根,则实数b的取值范围为()A. B.C. D.2.已知函数则函数值域是()A. B.C. D.3.已知函数,函数有三个零点,则取值范围是A. B.C. D.4.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知的顶点为,,,则该三角形的欧拉线方程为().注:重心坐标公式为横坐标:;纵坐标:A. B.C. D.5.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A. B.6C. D.76.已知命题p:,,则()A., B.,C., D.,7.已知实数a、b,满足,,则关于a、b下列判断正确的是()A.a<b<2 B.b<a<2C.2<a<b D.2<b<a8.使不等式成立的充分不必要条件是()A. B.C. D.9.下列说法正确的是()A.若,,则 B.若a,,则C.若,,则 D.若,则10.设,则的值为()A.0 B.1C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.在正方体ABCD-A1B1C1D1中,E、F是分别是棱A1B1、A1D1的中点,则A1B与EF所成角的大小为______12.当曲线与直线有两个相异交点时,实数的取值范围是________13.已知函数在区间是单调递增函数,则实数的取值范围是______14.已知函数,则的值为_________.15.已知,则用表示______________;16.若,则____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,求:(1);(2).18.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为万元和万元(如图).(1)分别写出两种产品的收益和投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?19.已知向量,不共线,,(1)若,求k的值,并判断,是否同向;(2)若,与夹角为,当为何值时,20.已知向量=(3,4),=(1,2),=(-2,-2)(1)求||,||的值;(2)若=m+n,求实数m,n的值;(3)若(+)∥(-+k),求实数k的值21.计算求解(1)(2)已知,,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】画出的图象,根据方程有个相异的实根列不等式,由此求得的取值范围.【题目详解】画出函数的图象如图所示,由题意知,当时,;当时,.令,则原方程化为.∵方程有8个相异实根,∴关于t的方程在上有两个不等实根.令,,∴,解得.故选:B2、B【解题分析】结合分段函数的单调性来求得的值域.【题目详解】当吋,单调递增,值域为;当时,单调递增,值域为,故函数值域为.故选:B3、D【解题分析】根据题意做出函数在定义域内的图像,将函数零点转化成函数与函数图像交点问题,结合图形即可求解.【题目详解】解:根据题意画出函数的图象,如图所示:函数有三个零点,等价于函数与函数有三个交点,当直线位于直线与直线之间时,符合题意,由图象可知:,,所以,故选:D.【题目点拨】根据函数零点的情况求参数有三种常用方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.4、D【解题分析】由重心坐标公式得重心的坐标,根据垂直平分线的性质设出外心的坐标为,再由求出,然后求出欧拉线的斜率,点斜式就可求得其方程.【题目详解】设的重点为,外心为,则由重心坐标公式得,并设的坐标为,解得,即欧拉方程为:,即:故选:D【题目点拨】本题考查直线方程,两点之间的距离公式,三角形的重心、垂心、外心的性质,考查了理解辨析能力及运算能力.5、D【解题分析】先求出,再求出即得解.【题目详解】由已知,函数与函数互为反函数,则由题设,当时,,则因为为奇函数,所以.故选:D6、A【解题分析】直接利用全称命题的否定即可得到结论【题目详解】因为命题p:,,所以:,.故选:A.7、D【解题分析】先根据判断a接近2,进一步对a进行放缩,,进而通过对数运算性质和基本不等式可以判断a>2;根据b的结构,构造函数,得出函数的单调性和零点,进而得到a,b的大小关系,最后再判断b和2的大小关系,最终得到答案.【题目详解】.构造函数:,易知函数是R上的减函数,且,由,可知:,又,∴,则a>b.又∵,∴a>b>2故选:D.【题目点拨】对数函数式比较大小通常借助中间量,除了0和1之外,其它的中间量需要根据题目进行分析,中间会用到指对数的运算性质和放缩法;另外,构造函数利用函数的单调性比较大小是比较常用的一种方法,需要我们对式子的结构进行仔细分析,平常注意归纳总结.8、A【解题分析】解一元二次不等式,再根据充分条件、必要条件的定义结合集合间的关系直接判断作答.【题目详解】解不等式得:,对于A,因,即是成立的充分不必要条件,A正确;对于B,是成立的充要条件,B不正确;对于C,因,且,则是成立的不充分不必要条件,C不正确;对于D,因,则是成立必要不充分条件,D不正确.故选:A9、C【解题分析】结合特殊值、差比较法确定正确选项.【题目详解】A:令,;,,则,,不满足,故A错误;B:a,b异号时,不等式不成立,故B错误;C:,,,,即,故C正确;D:令,,不成立,故D错误.故选:C10、C【解题分析】根据分段函数,结合指数,对数运算计算即可得答案.【题目详解】解:由于,所以.故选:C.【题目点拨】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】解:如图,将EF平移到A1B1,再平移到AC,则∠B1AC为异面直线AB1与EF所成的角三角形B1AC为等边三角形,故异面直线AB1与EF所成的角60°,12、【解题分析】由解析式可知曲线为半圆,直线恒过;画出半圆的图象,找到直线与半圆有两个交点的临界状态,利用圆的切线的求解方法和两点连线斜率公式求得斜率的取值范围.【题目详解】为恒过的直线则曲线图象如下图所示:由图象可知,当直线斜率时,曲线与直线有两个相异交点与半圆相切,可得:解得:又本题正确结果:【题目点拨】本题考查利用曲线与直线的交点个数求解参数范围的问题,关键是能够通过数形结合的方式找到临界状态,易错点是忽略曲线的范围,误认为曲线为圆.13、【解题分析】求出二次函数的对称轴,即可得的单增区间,即可求解.【题目详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:14、【解题分析】,填.15、【解题分析】根据对数的运算性质,对已知条件和目标问题进行化简,即可求解.【题目详解】因为,故可得,解得..故答案:.【题目点拨】本题考查对数的运算性质,属基础题.16、##0.25【解题分析】运用同角三角函数商数关系式,把弦化切代入即可求解.【题目详解】,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解题分析】(1)求出集合,再根据集合间的基本运算即可求解;(2)求出,再根据集合间的基本运算即可求解.【题目详解】解:(1)由,解得:,故,又,;(2)由(1)知:,或,或.18、(1)投资债券,投资股票;(2)投资债券类产品万元,股票类投资为4万元,收益最大值为万元.【解题分析】(1)设函数解析式,,代入即可求出的值,即可得函数解析式;(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元,则,代入解析式,换元求最值即可.【题目详解】(1)设.由题意可得:,,所以,,(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元依题意得即.令则,则所以当即时,收益最大为万元,所以投资债券类产品万元,股票类投资为4万元,收益最大值为万元.19、(1)k=-1,反向;(2)k=1【解题分析】由题得由此能求出,,与反向.由,得,由数量积运算求出【题目详解】,,,,即又向量,不共线,,解得,,即,故与反向,与夹角为,

,又故,即解得故时,【题目点拨】本题考查向量平行、向量垂直的性质等基础知识,熟记共线定理,准确计算是关键,是基础题20、(1)||=5;;(2);(3).【解题分析】(1)利用向量的模长的坐标公式即得;(2)利用向量的线性坐标表示即得;(3)利用向量平行的坐标表示即求.【小问1详解】∵向量=(3,4),=(1,2),∴||=5,;【小问2详解】∵=(3,4),=(1,2),=(-2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论