2022-2023学年河南省周口市第七高级中学高三数学文上学期期末试卷含解析_第1页
2022-2023学年河南省周口市第七高级中学高三数学文上学期期末试卷含解析_第2页
2022-2023学年河南省周口市第七高级中学高三数学文上学期期末试卷含解析_第3页
2022-2023学年河南省周口市第七高级中学高三数学文上学期期末试卷含解析_第4页
2022-2023学年河南省周口市第七高级中学高三数学文上学期期末试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年河南省周口市第七高级中学高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数y=eax+3x有平行于x轴的切线且切点在y轴右侧,则a的范围为()A.(﹣∞,﹣3) B.(﹣∞,3) C.(3,+∞) D.(﹣3,+∞)参考答案:A【考点】利用导数研究曲线上某点切线方程.【分析】求出原函数的导函数,由函数y=eax+3x有平行于x轴的切线且切点在y轴右侧,得导函数对应的方程有解且a<0,由此求得a的范围.【解答】解:由函数y=eax+3x,得y′=aeax+3,函数y=eax+3x有平行于x轴的切线且切点在y轴右侧,则y′=aeax+3=0(x>0)有解,即>0,a<0.即有0<﹣<1,解得a<﹣3.∴实数a的取值范围是(﹣∞,﹣3).故选:A.2.已知中,内角,,所对的边长分别为,,,若,且,,则的面积等于

A. B.

C. D.参考答案:A【知识点】正弦定理.C8解析:由正弦定理可得,即,所以,因此这是一个正三角形.故选A.【思路点拨】由已知结合正弦定理求得角B,则可断定△ABC是一个正三角形,然后由三角形的面积公式得答案.3.设集合A={x|x2﹣3x﹣4>0},集合B={x|﹣2<x<5},则A∩B=()A.{x|﹣1<x<4} B.{x|﹣2<x<﹣1或4<x<5}C.{x|x<﹣1或x>4} D.{x|﹣2<x<5}参考答案:B【考点】交集及其运算.【专题】计算题;转化思想;定义法;集合.【分析】先求出集合A,再由交集定义求解.【解答】解:∵集合A={x|x2﹣3x﹣4>0}={x|x>4或x<﹣1},集合B={x|﹣2<x<5},∴A∩B={x|﹣2<x<﹣1或4<x<5}.故选:B.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.4.已知、都是锐角,则=A.

B.

C.

D.参考答案:C因为是锐角,所以,又,所以,所以,.又,选C.5.函数y=xex的最小值是()A.-1 B.-eC.- D.不存在参考答案:C【分析】先求导数,再求导函数零点,列表分析导函数符号变化规律,确定单调性,进而确定最值.【详解】y′=ex+xex=(1+x)ex,令y′=0,则x=-1,因为x<-1时,y′<0,x>-1时,y′>0,所以x=-1时,ymin=-.选C.【点睛】利用导数解答函数最值的一般步骤:第一步:利用得可疑最值点,如导函数不变号,则根据函数单调性确定最值点在对应区间端点取得;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.6.已知锐角的终边上一点P(,),则等于

A.

B.

C.

D.

参考答案:C7.已知为锐角,且,函数,数列的首项,则有(A)

(B)

(C)

(D)参考答案:A,又∵为锐角,∴

∴,∴,∴,∵,∴都大于0,∴,∴8.函数y=1n|x-1|的图像与函数y=-2cosx(-2≤x≤4)的图像所有交点的横坐标之和等于

A.8

B.6

C.4

D.2参考答案:B略9.已知集合A={x|x2≥1},B={x|y=},则A∩?RB=()A.(2,+∞) B.(﹣∞,﹣1]∪(2,+∞) C.(﹣∞,﹣1)∪(2,+∞) D.[﹣1,0]∪[2,+∞)参考答案:B考点:交、并、补集的混合运算.专题:集合.分析:求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B补集的交集即可.解答:解:由A中不等式解得:x≥1或x≤﹣1,即A=(﹣∞,﹣1]∪[1,+∞),由B中y=,得到1﹣log2x≥0,即log2x≤1=log22,解得:0<x≤2,即B=(0,2],∴?RB=(﹣∞,0]∪(2,+∞),则A∩?RB=(﹣∞,﹣1]∪(2,+∞),故选:B.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.10.四棱锥的底面为正方形,侧面为等边三角形,且侧面底面,点在底面正方形内(含边界)运动,且满足,则点在正方形内的轨迹一定是

参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.函数f(x)=2sin(πx)﹣,x∈[﹣2,4]的所有零点之和为.参考答案:8考点:正弦函数的图象.专题:函数的性质及应用.分析:设t=1﹣x,则x=1﹣t,原函数可化为g(t)=2sinπt﹣,由于g(x)是奇函数,观察函数y=2sinπt与y=的图象可知,在[﹣3,3]上,两个函数的图象有8个不同的交点,其横坐标之和为0,从而x1+x2+…+x7+x8的值.解答:解:设t=1﹣x,则x=1﹣t,原函数可化为:g(t)=2sin(π﹣πt)﹣=2sinπt﹣,其中,t∈[﹣3,3],因g(﹣t)=﹣g(t),故g(t)是奇函数,观察函数y=2sinπt(红色部分)与曲线y=(蓝色部分)的图象可知,在t∈[﹣3,3]上,两个函数的图象有8个不同的交点,其横坐标之和为0,即t1+t2+…+t7+t8=0,从而x1+x2+…+x7+x8=8,故答案为:8.点评:本题主要考查正弦函数的图象特征,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于中档题.12.如图所示,圆的直径为6,为圆周上一点,,过作圆的切线,过作的垂线,垂足为,则

.参考答案:13.已知,,则向量在向量方向上的投影为

.参考答案:向量在向量方向上的投影为.14.设x,y为实数,若,则的最大值是_________.参考答案:15.定义在上的函数,如果对于任意给定的等比数列,仍是等比数列,则称为“等比函数”.现有定义在上的如下函数:①;②;③;④.则其中是“等比函数”的的序号为

. 参考答案:②③16.已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为________.参考答案:24π17.方程的两根为,且,则

。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知曲线C的极坐标方程是,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(为参数).(1)写出直线l的一般方程与曲线C的直角坐标方程,并判断它们的位置关系;(2)将曲线C向左平移2个单位长度,向上平移3个单位长度,得到曲线D,设曲线D经过伸缩变换得到曲线E,设曲线E上任一点为,求的取值范围.参考答案:(I)直线的一般方程为,曲线的直角坐标方程为.因为,所以直线和曲线相切.(II)曲线为.曲线经过伸缩变换得到曲线的方程为,则点的参数方程为(为参数),所以,所以的取值范围.19.如图,在三棱台ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1,M,N分别为AC,BC的中点.(1)求证:AB1∥平面C1MN;(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大小.参考答案:【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)连接B1N,B1C,设B1C与NC1交于点G,推导出四边形B1C1CN是平行四边形,从而MG∥AB1,由此能证明AB1∥平面C1MN.(2)以点M为坐标原点,MA,MB,MA1所在的直线分别为x,y,z轴建立空间直角坐标系,利用向量法能求出二面角C﹣MC1﹣N的大小.【解答】证明:(1)连接B1N,B1C,设B1C与NC1交于点G,在三棱台ABC﹣A1B1C1中,AB=2A1B1,则BC=2B1C1,而N是BC的中点,B1C1∥BC,则B1C1NC,所以四边形B1C1CN是平行四边形,G是B1C的中点,在△AB1C中,M是AC的中点,则MG∥AB1,又AB1?平面C1MN,MG?平面C1MN,所以AB1∥平面C1MN.解:(2)由CC1⊥平面ABC,可得A1M⊥平面ABC,而AB⊥BC,AB=BC,则MB⊥AC,所以MA,MB,MA1两两垂直,故以点M为坐标原点,MA,MB,MA1所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系.设AB=2,则A1B1=CC1=1,AC=2,AM=,B(0,,0),C(﹣,0,0),C1(﹣,0,1),N(﹣,,0),则平面ACC1A1的一个法向量为=(0,1,0),设平面C1MN的法向量为=(x,y,z),则,取x=1,则=(1,1,),cos<>=,由图形得得二面角C﹣MC1﹣N为锐角,所以二面角C﹣MC1﹣N的大小为60°.20.(本小题满分14分)设函数.(1)若函数在处有极值,求函数的最大值;(2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;②证明:不等式参考答案:(1)最大值为;(2)①的取值范围是;②证明见解析.

,不等式的左边,由,则有.这里用到了不等式的放缩法.当时,单调递减所以函数的最大值为(2)①由已知得:()若,则时,所以在上为减函数在上恒成立;()若,则时,所以在上为增函数,不能使在上恒成立;()若,则时,当时,所以在上为增函数,此时又故.考点:用导数研究函数的极值、单调性、最值,不等式恒成立问题,用函数证明不等式.21.(13分)(2012?佛山二模)记函数的导函数为f′n(x),函数g(x)=fn(x)﹣nx.(Ⅰ)讨论函数g(x)的单调区间和极值;(Ⅱ)若实数x0和正数k满足:,求证:0<x0<k.参考答案:考点: 利用导数研究函数的极值;利用导数研究函数的单调性.专题: 计算题;证明题;综合题.分析: (Ⅰ)由g(x)=(1+x)n﹣1﹣nx,可求得g′(x)=n[(1+x)n﹣1﹣1],分n(n≥2)为偶数与n为奇数讨论导数的符号,即可求得其单调区间和极值;(Ⅱ)由可求得x0=,设分子为h(k)=(nk﹣1)(1+k)n+1(k>0),可分析得到h'(k)>0,从而h(k)>h(0)=0,求得x0>0;进一步可求得x0﹣k=<0,从而得证0<x0<k.解答: 解:(Ⅰ)由已知得g(x)=(1+x)n﹣1﹣nx,所以g′(x)=n[(1+x)n﹣1﹣1].…(2分)①当n≥2且n为偶数时,n﹣1是奇数,由g'(x)>0得x>0;由g'(x)<0得x<0.所以g(x)的递减区间为(﹣∞,0),递增区间为(0,+∞),极小值为g(0)=0.…②当n≥2且n为奇数时,n﹣1是偶数,由g'(x)>0得x<﹣2或x>0;由g'(x)<0得﹣2<x<0.所以g(x)的递减区间为(﹣2,0),递增区间为(﹣∞,﹣2)和(0,+∞),此时g(x)的极大值为g(﹣2)=2n﹣2,极小值为g(0)=0.…(8分)(Ⅱ)由得,所以1+x0=,x0=…(10分)显然分母(n+1)[(1+k)n﹣1]>0,设分子为h(k)=(nk﹣1)(1+k)n+1(k>0)则h'(k)=n(1+k)n+n(1+k)n﹣1(nk﹣1)=n(n+1)k(1+k)n﹣1>0,所以h(k)是(0,+∞)上的增函数,所以h(k)>h(0)=0,故x0>0…(12分)又x0﹣k=,由(Ⅰ)知,g(x)=(1+x)n﹣1﹣nx是(0,+∞)上的增函数,故当x>0时,g(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论