




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省深圳市红岭中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若有一组数据的总偏差平方和为120,相关指数为0.6,则回归平方和为(
)A.60
B.72
C.48
D.120参考答案:B2.已知点、、、,则向量在方向上的投影为()A.B.C.D.参考答案:A略3.数列满足,,记数列前n项的和为Sn,若对任意的恒成立,则正整数的最小值为
(
)
A.10
B.9
C.8
D.7参考答案:A略4.从1,2,3,4这个数中,不放回地任意取两个数,两个数都是偶数的概率是(
)A.
B.
C.
D.参考答案:A5.两个等差数列和,其前项和分别为,且则等于A.
B.
C.
D.参考答案:D6.一货轮航行到处,测得灯塔在货轮的北偏东,与灯塔相距海里,随后货轮按北偏西的方向航行分钟后,又得灯塔在货轮的东北方向,则货轮的速度为(
).A.海里/小时B.
海里/小时C.
海里/小时D.
海里/小时参考答案:B
解析:设货轮按北偏西的方向航行分钟后处,,
得,速度为
海里/小时.7.双曲线的一个焦点是(0,3),那么的值是(
)
A.-1
B.1
C.
D.参考答案:A略8.对于函数,下列说法错误的是(
)A.函数的极值不能在区间端点处取得B.若为的导函数,则是在某一区间存在极值的充分条件C.极小值不一定小于极大值D.设函数在区间内有极值,那么在区间内不单调.参考答案:B【分析】利用导数知识对每一个选项逐一分析判断得解.【详解】A.函数的极值不能在区间端点处取得,故该选项是正确的;B.若为的导函数,则是在某一区间存在极值的非充分条件,如函数,但是函数是R上的增函数,所以x=0并不是函数的极值点.故该选项是错误的;C.极小值不一定小于极大值,故该选项是正确的;D.设函数在区间内有极值,那么在区间内不单调.故该选项是正确的.故选:B【点睛】本题主要考查极值的概念和性质,意在考查学生对这些知识的理解掌握水平,属于基础题.9.已知一几何体的正视图与侧视图均为边长为2的正三角形,俯视图是半径为1的圆,则其表面积为(
)
A.
B.
C.
D.
参考答案:B10.实验中学采取分层抽样的方法从应届高一学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示
男女文科25理科103
根据表中数据,利用公式计算的值,若断定实验中学的高一学生选报文理科与性别有关,那么这种判断出错的可能性为(
)(A)0.1
(B)0.05
(C)0.01
(D)0.001参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.A、B、C、D、E五种不同的商品要在货架上排成一排,其中A、B两种商品必须排在一起,而C、D两种商品不能排在一起,则不同的排法共有___________种.参考答案:2412.已知平行四边形ABCD的四个顶点均在双曲线上,O为坐标原点,E,F为线段AB,AD的中点且OE,OF的斜率之积为3,则双曲线C的离心率为
.参考答案:2由双曲线的对称性知O是平行四边形ABCD对角线的交点,∴OE//AD,OF//AB,∴,设,则,设,则,∴,,故答案为2.
13.已知直线:ax+by=1(其中a,b是实数)与圆:x2+y2=1(O是坐标原点)相交于A,B两点,且△AOB是直角三角形,点P(a,b)是以点M(0,1)为圆心的圆M上的任意一点,则圆M的面积最小值为.参考答案:(3﹣2)π【考点】直线与圆相交的性质.【分析】根据圆的方程找出圆心坐标和半径,由|OA|=|OB|根据题意可知△AOB是等腰直角三角形,根据勾股定理求出|AB|的长度,根据等腰直角三角形的性质可得圆心到直线的距离等于|AB|的一半,然后利用点到直线的距离公式表示出圆心到直线的距离,两者相等即可得到a与b的轨迹方程为一个椭圆,圆M的面积最小时,所求半径为椭圆a2+=1上点P(a,b)到焦点(0,1)的距离最小值,即可得出结论.【解答】解:由圆x2+y2=1,所以圆心(0,0),半径为1所以|OA|=|OB|=1,则△AOB是等腰直角三角形,得到|AB|=则圆心(0,0)到直线ax+by=1的距离为,所以2a2+b2=2,即a2+=1.因此,圆M的面积最小时,所求半径为椭圆a2+=1上点P(a,b)到焦点(0,1)的距离最小值,由椭圆的性质,可知最小值为﹣1.所以圆M的面积最小值为π(﹣1)2=(3﹣2)π.故答案为:(3﹣2)π.14.椭圆x2+4y2=1的离心率为________.参考答案:a>1略15.已知向量,,,若,则
.参考答案:16.从0,2中选一个数字,从1,3,5中选两个数字,组成没有重复数字的三位数,其中奇数的个数为________(用数字作答)
参考答案:1817.某停车场内有序号为1,2,3,4,5的五个车位顺次排成一排,现在四辆车需要停放,若两车停放的位置必须相邻,则停放方式种数为
▲
.(用数字作答)参考答案:48三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆C:+=1(a>b>0)的一个长轴顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.参考答案:【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)根据椭圆一个顶点为A(2,0),离心率为,可建立方程组,从而可求椭圆C的方程;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0,从而可求|MN|,A(2,0)到直线y=k(x﹣1)的距离,利用△AMN的面积为,可求k的值.【解答】解:(Ⅰ)∵椭圆一个顶点为A(2,0),离心率为,∴∴b=∴椭圆C的方程为;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0设M(x1,y1),N(x2,y2),则x1+x2=,∴|MN|==∵A(2,0)到直线y=k(x﹣1)的距离为∴△AMN的面积S=∵△AMN的面积为,∴∴k=±1.【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是正确求出|MN|.19.为了对某课题进行研究,用分层抽样方法从三所科研单位A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):科研单位相关人数抽取人数A16B123C8(1)确定与的值;(2)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率.
参考答案:略20.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,.(Ⅰ)求证:AC⊥平面BDE.(Ⅱ)求平面FBE与平面DBE夹角θ的余弦值.(Ⅲ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.参考答案:(Ⅰ)证明:∵平面,平面,∴
…………1分
又∵是正方形,∴,…………2分∵,∴平面.…………3分(Ⅱ)∵,,两两垂直,所以建立如图空间直角坐标系,∵,得.…………4分则,,,,,∴,,…………6分设平面的法向量为,则,即,令,则.因为平面,所以为平面的法向量,∴,所以.因为二面角为锐角,故平面FBE与平面DBE夹角θ的余弦值为.…………9分(Ⅲ)依题意得,设,则,∵平面,∴,即,解得:,∴点的坐标为,此时,∴点是线段靠近点的三等分点.……12分21.已知函数().(Ⅰ)若在处的切线过点(2,2),求a的值;(Ⅱ)若恰有两个极值点,().(ⅰ)求a的取值范围;(ⅱ)求证:.参考答案:(Ⅰ)(Ⅱ)(ⅰ)(ⅱ)见证明【分析】(Ⅰ)对函数进行求导,然后求出在处的切线的斜率,求出切线方程,把点代入切线方程中,求出的值;(Ⅱ)(ⅰ),,,分类讨论函数的单调性;当时,可以判断函数没有极值,不符合题意;当时,可以证明出函数有两个极值点,,故可以求出的取值范围;由(ⅰ)知在上单调递减,,且,由得,,又,.法一:先证明()成立,应用这个不等式,利用放缩法可以证明出成立;法二:令(),求导,利用单调性也可以证明出成立.【详解】解:(Ⅰ),又在处的切线方程为,即切线过点,(Ⅱ)(ⅰ),,,当时,,在上单调递增,无极值,不合题意,舍去当时,令,得,(),或;,在上单调递增,在上单调递减,在上单调递增,恰有个极值点,,符合题意,故的取值范围是(ⅱ)由(ⅰ)知在上单调递减,,且,由得,,又,法一:下面证明(),令(),,在上单调递增,,即(),,综上法二:令(),则,在上单调递增,,即,综上【点睛】本题考查了曲线切线方程的求法,考查了函数有极值时求参数取值范围问题,考查了利用导数研究函数的性质.22.(本小题满分14分)已知数列的前项和,函数对任意的都有,数列满足.(1)分别求数列、的通项公式;(2)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在请指出的取值范围,并证明;若不存在请说明理由.参考答案:(1)
……………1分
时满足上式,故
……………2分∵=1∴
……………3分∵
①∴
②∴①+②,得
……………5分(2)∵,∴
………………6分
∴,
①,
②①-②得
……
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45560-2025地球静止轨道处能量2 MeV以上的电子日积分强度分级
- 浙江省温州九校2024-2025学年生物高二第二学期期末联考试题含解析
- 盐城市阜宁县高二上学期期中考试化学(必修)试题
- 空间科技厂区安全技术研发与物业运营合同
- 出租车企业驾驶员服务品质保障劳动合同样本
- 高新技术园区厂房出租安全生产责任合同模板
- 社区环境满意度调查及改进方案合同
- 旅游景区特色档口租赁管理与维护合同
- 桥涵承包合同(样本)
- 就职表态发言稿范文(18篇)
- 中国文化概观-终结性考核-国开(SC)-参考资料
- 财经基础知识与技能试卷
- 医院电子病历系统维护制度
- 有害物质过程管理系统HSPM培训教材
- 国家职业技术技能标准 X2-10-07-17 陶瓷产品设计师(试行)劳社厅发200633号
- 深圳医院质子重离子治疗中心项目可行性研究报告
- 广东省广州市2024年中考数学真题试卷(含答案)
- 我国的生产资料所有制
- 2024年上海市黄浦区四年级数学第一学期期末学业水平测试试题含解析
- 初中数学《相似三角形》压轴30题含解析
- 2024年海南省中考数学试题卷(含答案解析)
评论
0/150
提交评论