2022-2023学年辽宁省鞍山市第五十五中学高三数学理联考试卷含解析_第1页
2022-2023学年辽宁省鞍山市第五十五中学高三数学理联考试卷含解析_第2页
2022-2023学年辽宁省鞍山市第五十五中学高三数学理联考试卷含解析_第3页
2022-2023学年辽宁省鞍山市第五十五中学高三数学理联考试卷含解析_第4页
2022-2023学年辽宁省鞍山市第五十五中学高三数学理联考试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年辽宁省鞍山市第五十五中学高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知且,则复数

A.必为实数

B.必为虚数C.是虚数但不一定是纯虚数

D.可能是实数,也可能是虚数参考答案:A2.已知为虚数单位,则复数

(

)A.

B.

C.

D.1参考答案:C略3.将函数的图象向_________单位可得到函数的图象。A.向左平移

B.向右平移 C.向右平移 D.向左平移参考答案:A4.复数z=的共轭复数为()A.﹣1﹣i B.1﹣i C.﹣2﹣i D.﹣2+i参考答案:D【分析】利用复数的代数形式的乘除运算法则先求出复数z,由此能求出z的共轭复数.【解答】解:z=====﹣2﹣i,∴复数z=的共轭复数为﹣2+i.故选:D.5.若a,b,c,满足,,,则(

)A. B. C. D.参考答案:A分析:先利用指数函数的单调性确定的取值范围,再通过对数函数的单调性确定的范围,进而比较三个数的大小.详解:因为,所以,因为,所以,又,所以.点睛:本题考查指数函数的单调性、对数函数的单调性等知识,意在考查学生的逻辑思维能力.6.在矩形中,.若,则的值为(

)A.2

B.4

C.5

D.7参考答案:D考点:平面向量的线性运算.7.已知是虚数单位,则等于(

) A. B. C. D.参考答案:A8.已知函数,若是函数的唯一极值点,则实数的取值范围是(

)A.(-∞,e]

B.(-∞,e)

C.(-e,+∞)

D.[-e,+∞)参考答案:A由函数,可得,有唯一极值点有唯一根,无根,即与无交点,可得,由得,在上递增,由得,在上递减,,即实数k的取值范围是,故选A.

9.已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=? B.A∪B=R C.B?A D.A?B参考答案:B【考点】1D:并集及其运算;74:一元二次不等式的解法.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.10.某几何体的三视图如图所示,则该几何体的外接球表面积为()A.4π B.12π C.24π D.48π参考答案:B【考点】由三视图求面积、体积.【专题】计算题;数形结合;数形结合法;立体几何.【分析】作出几何体的直观图,根据其结构特征求出外接球的半径,得出球的表面积.【解答】解:由三视图可知几何体为三棱锥P﹣ABC,PA⊥平面ABC,AB⊥BC,PA=AB=BC=2,取PC中点O,AC中点D,连结OA,OD,BD,OB,则AC==2,PC==2.∴OP=OC=,OA=PC=,BD==,OD==1,∴OB==,∴OA=OB=OC=OP,∴O是棱锥P﹣ABC外接球的球心,外接球半径r=OA=,∴外接球表面积S=4πr2=12π.故选B.【点评】本题考查了棱锥的三视图和结构特征,球与内接多面体的关系,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.已知数列{bn}的前n项和为Sn,满足,且对任意都有,函数,方程的根从小到大组成数列{an},则的取值范围是

.参考答案:

12.已知函数,若方程有且仅有两个解,则实数的取值范围是

.参考答案:略13.一个几何体的三视图如图所示(单位),则刻几何体的体积为

.参考答案:考点:三视图的识读和几何体的体积的计算.14.已知在中,角,,所对的边分别为,,,,点在线段上,且.若,则

.参考答案:,有正弦定理得,则,所有。由题意,是角平分线,,设,则,由,所有,,由得,,解得,所以。

15.已知函数f(x)=g(x)=asin(x+)﹣2a+2(a>0),给出下列结论:①函数f(x)的值域为[0,];②函数g(x)在[0,1]上是增函数;③对任意a>0,方程f(x)=g(x)在[0,1]内恒有解;④若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是[,].其中所有正确结论的序号是.参考答案:①②④【考点】分段函数的应用.【专题】阅读型;函数的性质及应用.【分析】求得f(x)的各段的值域,再求并集,即可判断①;化简g(x),判断g(x)的单调性即可判断②;求出g(x)在[0,1]的值域,求出方程f(x)=g(x)在[0,1]内无解的a的范围,即可判断③;由③得,有解的条件为:g(x)的最小值不大于f(x)的最大值且g(x)的最大值不小于f(x)的最小值,解出a的范围,即可判断④.【解答】解:当x∈[0,]时,f(x)=﹣x是递减函数,则f(x)∈[0,],当x∈(,1]时,f(x)==2(x+2)+﹣8,f′(x)=2﹣>0,则f(x)在(,1]上递增,则f(x)∈(,].则x∈[0,1]时,f(x)∈[0,],故①正确;当x∈[0,1]时,g(x)=asin(x+)﹣2a+2(a>0)=﹣acosx﹣2a+2,由a>0,0≤x≤,则g(x)在[0,1]上是递增函数,故②正确;由②知,a>0,x∈[0,1]时g(x)∈[2﹣3a,2﹣],若2﹣3a>或2﹣<0,即0<a<或a>,方程f(x)=g(x)在[0,1]内无解,故③错;故存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则解得≤a≤.故④正确.故答案为:①②④.【点评】本题考查分段函数的运用,考查函数的值域和单调性及运用,考查存在性命题成立的条件,转化为最值之间的关系,属于易错题和中档题.16.观察下列等式,按此规律,第n个等式的右边等于

.参考答案:3n2﹣2n【考点】归纳推理.【分析】由图知,第n个等式左边是n个奇数的和,第一个奇数是2n﹣1,由等差数列的求和公式计算出第n个等式的和,即可得结果.【解答】解:由图知,第n个等式的等式左边第一个奇数是2n﹣1,故n个连续奇数的和故有n×=n×(3n﹣2)=3n2﹣2n.故答案为3n2﹣2n.17.已知双曲线(a>0,b>0)的左顶点为,右焦点为,过的直线与双曲线交于A,B两点,且满足:,,则该双曲线的离心率是________.参考答案:2考点:双曲线因为,所以F为AB的中点,所以轴,即

又,所以所以

即等式两边除以得:解得e=2.

故答案为:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80-90分数段的学员数为21人(1)求该专业毕业总人数N和90-95分数段内的人数;(2)现欲将90-95分数段内的名人分配到几所学校,从中安排2人到甲学校去,若人中仅有两名男生,求安排结果至少有一名男生的概率.参考答案:(1)6;(2).试题分析:(1)分数段频率为,此分数段的学员总数为人所以毕业生的总人数为,分数段内的人数频率为所以分数段内的人数(2)分数段内的人中有两名男生,名女生设男生为;女生为,设安排结果中至少有一名男生为事件从中取两名毕业生的所有情况(基本事件空间)为共种组合方式,每种组合发生的可能性是相同的其中,

至少有一名男生的种数为共种,所以,。19.已知数列{an}的前n项和,令bn=log9an+1.(1)求数列{bn}的通项公式;(2)若数列{bn}的前n项和为Tn,数列的前n项和为Hn,求H2017.参考答案:【考点】数列的求和;数列递推式.【分析】(1)由数列的前n项和求出数列通项公式,代入bn=log9an+1,利用对数的运算性质求得数列{bn}的通项公式;(2)求出数列{bn}的前n项和为Tn,利用裂项相消法求得数列的前n项和为Hn,则H2017可求.【解答】解:(1)当n=1时,;当n≥2时,.a1=1适合上式,∴.则bn=log9an+1=,即数列{bn}的通项公式;(2)由,得.则.于是=,则.20.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值.参考答案:【考点】一般形式的柯西不等式.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值;(2)运用柯西不等式,注意等号成立的条件,即可得到最小值.【解答】解:(1)因为f(x)=|x+a|+|x﹣b|+c≥|(x+a)﹣(x﹣b)|+c=|a+b|+c,当且仅当﹣a≤x≤b时,等号成立,又a>0,b>0,所以|a+b|=a+b,所以f(x)的最小值为a+b+c,所以a+b+c=4;(2)由(1)知a+b+c=4,由柯西不等式得,(a2+b2+c2)(4+9+1)≥(?2+?3+c?1)2=(a+b+c)2=16,即a2+b2+c2≥当且仅当==,即a=,b=,c=时,等号成立.所以a2+b2+c2的最小值为.【点评】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.21.如图,直线PQ与⊙O相切于点A,AB是⊙O的弦,∠PAB的平分线AC交⊙O于点C,连结CB,并延长与直线PQ相交于点Q,若AQ=6,AC=5.(Ⅰ)求证:QC2﹣QA2=BC?QC;(Ⅱ)求弦AB的长.参考答案:考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:(Ⅰ)利用切割线定理得:QA2=QB?QC=(QC﹣BC)?QC=QC2﹣BC?QC,即可证明QC2﹣QA2=BC?QC;(Ⅱ)求出AC=BC=5,QC=9,由∠QAB=∠ACQ,知△QAB∽△QCA,即可求弦AB的长.解答: (Ⅰ)证明:∵PQ与⊙O相切于点A,∴由切割线定理得:QA2=QB?QC=(QC﹣BC)?QC=QC2﹣BC?QC.…∴QC2﹣QA2=BC?QC.…(Ⅱ)解:∵PQ与⊙O相切于点A,∴∠PAC=∠CBA,∵∠PAC=∠BAC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论